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Abstract
AI-enabled applications are prolific today. Deep Learning (DL) li-
braries, such as PyTorch and Tensorflow, provide the building blocks
for the AI components of these applications. As any piece of soft-
ware, these libraries can be buggy. An impressive number of bug-
finding techniques to address this problem have been proposed, but
the lack of a curated set of reproducible bugs in DL libraries hinders
credible evaluation of these techniques. We present BugsInDLLs,
a database of curated reproducible bugs to fill that gap. Unique
challenges exist in this context, such as installing drivers of specific
CUDA versions to reproduce certain GPU-related bugs. Our dataset
currently consists of 112 environments to reproduce bugs across
three popular DL libraries, namely, JAX, Tensorflow, and PyTorch.
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1 Introduction
Several application domains (e.g., transportation and medicine) use
AI as part of their solutions. Deep Learning (DL) libraries, such as
JAX, PyTorch, and Tensorflow, provide the building blocks for the
AI components of these applications. Unfortunately, as any piece
of software, these libraries contain bugs. An impressive number
of techniques have been recently proposed to find bugs in these li-
braries [1–3, 6, 7, 10, 11, 16, 17, 21, 22, 24], however we observe these
techniques propose an independent evaluation methodology. These
techniques do not use a reference database of reproducible bugs to
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evaluate their effectiveness. The lack of an evaluation standard is
a serious obstacle to a fair and rigorous comparison of techniques
and hinders research progress.

Although many datasets of reproducible bugs have been pro-
posed in the literature, there is a lack of solutions satisfying the
following criteria:
(1) developers should be able to write test scripts in Python;
(2) they should be able to handle nighly builds and specific versions

of CUDA (§ 3.2);
(3) they should be able to integrate fuzzing tools in the framework.

Note that DL libraries are written in Python. Existing datasets
of reproducible bugs exist in Python (e.g., BugInPy [23] and
Tests4Py [18]), but they fail to satisfy the second or the third re-
quirement. For example, BugsInPy and Tests4Py do not support
artifacts in Docker, which are necessary to modify CUDA drivers
in the guest OS to reproduce specific GPU-related bugs.1 More
importantly, a dataset of Deep Learning Libraries needs to support
the integration of new fuzzing tools. The central purpose of such
dataset is to enable the systematic evaluation of testing techniques.

We present BugsInDLLs, a database of curated reproducible
bugs to enable credible evaluation of DL library testing techniques.
BugsInDLLs is equipped with a command-line interface to enable
researchers to analyze and reproduce bug instances. BugsInDLLs
has been under active development since March 21, 2024, the day of
the first commit in its GitHub repository. Two UROP students, two
PhD students, and two faculty were involved in the work during
this period. Section 2 details tool availability.

2 Tool Availability
BugsInDLLs is publicly available from the following URL:

https://github.com/ncsu-swat/bugsindlls
The video from this URL demonstrates BugsInDLLs:

https://www.youtube.com/watch?v=NslNWrULT1c
The archived version at Zenodo is available with this DOI:

https://doi.org/10.5281/zenodo.15064163

3 Objects and Methods
This section describes the criteria for selecting libraries and bugs
(Section 3.1), the challenges for bug reproduction (Section 3.2), and
the method we followed to create bug instances (Section 3.3).

1BugsInPy and Tests4Py use python virtual environments, e.g., venv and pyenv.
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Table 1: Characterization of bugs from BugsInDLLs.

# build enviroment
release-nightly conda-docker

JAX 46 45-1 45-1
PyTorch 37 18-19 21-16
Tensorflow 29 27-2 29-0

Σ 112 90-22 95-17

BugsInDLLs contains 112 instances of reproducible bugs repre-
senting three popular DL libraries, namely, JAX, Tensorflow, and
PyTorch. Table 1 shows the list of bug instances for each supported
library. Column “#” shows the number of bug instances, column
“build” shows the breakdown of instances for each kind of build
(release or nightly), and column “environment” shows the break-
down of instances for each kind of environment to reproduce the
bug (conda enviroment or docker). Co-incidentally, all bugs that
require a GPU are reproduced using docker containers, i.e. the col-
umn conda-docker matches what would have been observed with a
column CPU-GPU, to indicate if the bug can be reproduced with a
CPU or if it requires a GPU. Table 2 shows the breakdown of error
types for the bugs in our dataset. The row “Incorrect Output” is
listed first as it requires a distinct kind of oracle comparing consis-
tency of the outputs of test runs on a CPU and on a GPU. In total,
we have 18 different types of bug manifestations across the three
libraries.

3.1 Selection Criteria
Libraries. PyTorch and Tensorflow are popular DL libraries in-
tensively used in the literature. JAX is a newer library that has
been rapidly gaining popularity. All these libraries are open source
with active communities supporting their maintenance. From these
three libraries, we selected issue reports from specific periods in
their respective issue trackers. For PyTorch, we selected issues from
the period between December 1, 2023 and August 16, 2024. For
Tensorflow, we selected issues from the period between February 1,
2021 and July 31, 2024. For JAX, we selected issues from the period
between August 1, 2023 and July 10, 2024. We have chosen different
periods for each library depending on the number of issues reported
in the issue tracker in that period. For example, Tensorflow has a
much longer period compared to the others because the frequency
of issues reported in the issue tracker is lower.

Bugs. We focus on issue reports that have been accepted by the
developer community as true bugs. We determine this by checking
whether the issue reports have the label "bug" and have been fixed
with pull requests linked to them. We then create a filter that in-
corporates the periods mentioned above, the label (bug), the issue
status being closed and the presence of a linked pull request. We
found 725 issues for PyTorch, 217 issues for Tensorflow, and 111
issues for JAX after filtering the issues. PyTorch has the highest
number of issues due to a lack of a label for bugs in the issue tracker.
Then, we manually inspect the filtered issues to ensure that they
contain enough information to reproduce the bug, i.e., code to re-
produce the bug, dependencies required for the bug reproduction,
clear description of the desired behavior, etc. We discard cases that

Table 2: Different bug manifestation types from BugsInDLLs.

Bug manifestation type Jax Pytorch Tensorflow Total

Incorrect Output 14 11 5 30
Internal Exception 11 9 4 24
Value Error 7 0 4 11
Type Error 0 1 8 9
Attribute Error 3 2 3 8
Index Error 0 7 1 8
Runtime Error 2 0 2 4
Memory Error 2 1 0 3
Invalid Argument Error 0 2 1 3
Floating Point Error 1 1 0 2
Error Not Raised 1 0 1 2
Parse Error 0 2 0 2
Runtime Warning 1 0 0 1
Not Implemented Error 1 0 0 1
Assertion Error 1 0 0 1
Segmentation Fault 1 0 0 1
Floating Point Exception 1 0 0 1
Aborted 0 1 0 1

Σ 46 37 29 112

are not in the core functionality of the library e.g. documentation is-
sues, feature requests, etc. After this stage of manual inspection, we
end up with 143 issues for PyTorch, 102 issues for Tensorflow, and
80 issues for JAX. Finally, we do a deeper analysis on these bugs. We
find some cases that are related to building/installation/problematic
unit tests instead of bugs in the core API functionality, as well as
some cases that are simply API misuses, not bugs. These bugs can
be detected and discarded at this stage. We assess the reproducibil-
ity of a bug by creating a virtual environment that contains the
necessary dependencies to reproduce the bug. Some bugs require
very specific hardware (e.g. TPU) or can not be reproduced due to
requiring a debug build that only the developers can access. We
successfully reproduce the bug if none of these issues are present by
creating the enviroment detailed in the report, and we include the
corresponding artifacts in our dataset. We use a virtual enviroment
(conda [4]) when the bug can be reproduced on a CPU, and we use
docker containers [12] with appropriate CUDA drivers when the
bug requires a GPU. Throughout this process, we obtain 46, 37, and
29 bug instances for JAX, PyTorch, and Tensorflow, respectively.

3.2 Challenges
Handling bugs from nightly builds requires saving wheels.
Many of the reproducible bugs rely on the libraries’ nightly builds,
which are available for a limited amount of time. To ensure that
bugs reported on these builds remain reproducible, it is necessary
to save Python wheel files (.whl) [13] for the correspondind builds.
Handling bugs in specific GPU-CUDA versions requires OS
changes: Some GPU-related bug instances can only be reproduced
with specific versions of CUDA [15], NVIDIA’s platform and API
for programming GPUs. These instances require specific CUDA
drivers to be installed on the system. Python virtual environments
are not designed to enable changing OS drivers. We use Docker
containers [12] for the bug instances that require changes in drivers.
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3.3 Method
The following steps show the method we use to create bug instances:
(1) Select an issue following the criteria defined in Section 3.1;
(2) Identify the version of the library used to report the bug along

with other dependencies;
(3) Write a requirements.txt file with the list of dependencies

to reproduce the bug;
(4) Create a file showing the code that causes the bug (for docu-

mentation);
(5) Create a file with a pytest test case that passes if the code

triggers the buggy behavior documented in the issue;
(6) If the bug depends on a CUDA-specific build, write a Dockerfile

to create a container including the needed CUDA-driver and the
other artifacts mentioned above (e.g., test file and requirements);

(7) Write a script that creates the virtual environment (either
Python’s Conda Enviroment [4] or Docker container [12]) and
runs the test on it;

(8) Create a directory <lib>/<bug-id> containing all the artifacts
mentioned above, where lib is the affected library and bug-id
is the issue number of the bug report.

Test Oracles. The bug reproduction code includes python tests
(pytest). The test oracle is satisfied when the bug is reproduced
successfully. For bugs that throw an unexpected exception, the
test catches the exception and reports the exception details along
with a pass status. For bugs that result in incorrect output value,
assertions are placed in the code to expect the incorrect output
value, hence passing the test when the bug occurs. For bugs that
crash after raising a signal, the code snippet is placed in a seperate
file and executed, while the file contaning the actual test asserts
the presence of the signal raised by the code. Upon successful
reproduction, the original code crashes raising the proper signal
and the assertion passes.

Example The issue no. 120903 in PyTorch has the following test
code that checks the oracle:
def test_f():

input_data = torch.randn(3, 4, 5, 6)
scale = np.array([0.1, 0.2, 0.3, 0.4])
zero_point = torch.tensor([1, 2, 3, 4], dtype=torch.int32)
axis = 1
quant_min = 0
quant_max = 255
with pytest.raises(RuntimeError) as e_info:

output = torch.fake_quantize_per_channel_affine(input_data,
↩→ torch.from_numpy(scale), zero_point, axis, quant_min,
↩→ quant_max)

print(f'{e_info.type.__name__}:␣{e_info.value}')

In this example, the unexpected behavior is a RuntimeError thrown
by the call to the fake_quantize_per_channel_affine API from
PyTorch. Since the test oracle should pass when the bug is suc-
cessfully reproduced, the code catches the exception and prints
information about it, and upon catching the exception successfully,
the test passes. If the bug reproduction fails i.e. the exception is not
thrown or a different exception is thrown, the test will fail.

4 BugsInDLLs
This section presents the interface of BugsInDLLs and walks the
reader through a demonstration showing the tool’s functionality.

Table 3: BugsInDLLs command-line interface.

command description

list-tests List the tests available on this dataset
run-test Runs one test
run-tests Runs all the tests
run-tool Runs a testing tool in a given buggy environment
show-info Shows information about available tests
stats Shows statistics about this dataset (e.g., number of tests

that require GPU, etc)

4.1 Interface
Table 3 shows the list of commands in the BugsInDLLs’s interface
along with a short description for these commands. In the following
we demonstrate BugsInDLLs.

4.2 Usage
To enable system-wide access of the framework, it is necessary to
add the directory /framework to the PATH environment variable.
Run the following commands for that:

$> git clone git@github.com:ncsu−swat/bugsindlls.git
$> cd bugsindlls
$> export PATH=$PATH:`pwd`/framework

4.2.1 Running one bug instance. Let us use bug 120903 [20] from
PyTorch to demonstrate the command run-test, which runs a test
to reproduce a bug on an environment with needed dependencies
installed. Use the following command to reproduce the bug:

$> run−test −−library−name pytorch −−bug−id 120903

Execution of this command produces the following output:

...
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.2.0+cpu
[conda] torch 2.2.0+cpu pypi_0 pypi
====== test session starts ======
platform linux −− Python 3.10.0, pytest−8.2.0, pluggy−1.5.0
...
test_issue_120903.py Pytorch issue no. 120903
Seed: 120903
RuntimeError: !needs_dynamic_casting<func_t>::check(iter) INTERNAL

↩→ ASSERT FAILED at "../aten/src/ATen/native/cpu/Loops.h":310,
↩→ please report a bug to PyTorch.

====== 1 passed in 0.96s ======

The output shows the dependencies installed in the environment
to reproduce the bug and the verdict of the test oracle from pytest. In
this case, the execution of the bug-revealing test throws a runtime
error. Note that this test passes as it reproduces the intended bug.

4.2.2 Running FreeFuzz [22] on BugsInDLLs. A developer needs to
provide three scripts to integrate a fuzzing tool: (1) a script that con-
tains commands to run the tool (e.g. run_freefuzz_docker.sh);
(2) a preprocessing script to extract error types and buggy APIs
for a specific library version (preprocess.py), and (3) a post-
processing script to match the execution log with the expected
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errors (postprocess.py). The directory tool-integration con-
tains templates for these scripts and their instantiations for Free-
Fuzz [22], a popular API fuzzer for DL libraries. We demonstrate the
integration of FreeFuzz [22]. The following script creates a Docker
container for FreeFuzz.
$> cd tool−integration/FreeFuzz && bash install_freefuzz_docker.sh

The script install_freefuzz_docker.sh builds the docker con-
tainer that encapsulates FreeFuzz.

The following script runs FreeFuzz on all bugs associated with
version 2.2.1+cu121 of PyTorch. The command run-tool takes
the library version as an input, along with the name of the
docker container (already created), the name of the library, and
the user-provided script containing the commands to run the tool
(run_freefuzz_docker.sh). The script reports how many bugs
that are reproducible with this version of the library were suc-
cessfully reproduced by the given tool. Tool execution proceeds as
follows. First, a Docker container associated with the tool is created
using install_freefuzz_docker.sh. Next, a reproducible bug is
tested using the specified library version as input to verify the setup.
Following this, the preprocessing script (preprocess.py) is exe-
cuted to extract error types and identify buggy APIs for the given
library version. The environment inside the Docker container is
then updated to match the specified version, ensuring compatibility
before running the fuzzing tool. Once execution is complete, a post-
processing script (postprocess.py) is run to analyze the execution
log against the ground truth, determining whether the bugs were
successfully reproduced.
$> run−tool −c freefuzz −l pytorch −v 2.2.1+cu121 \

−−run−script tool−integration/FreeFuzz/run_freefuzz_docker.sh

The output looks like the following:
Using bug−id 121725 for library pytorch version 2.2.1+cu121
...
RuntimeError: Please look up dimensions by name, got: name = None.
====== 1 passed in 0.63s ======
Updating environment in the container of the testing tool
...
Running the testing tool on the environment of the bug
APIs under test:
torch.logsumexp
torch.autograd.grad
Testing on ['torch']
torch.multinomial
...
No violation of precision−oracle in the compare−bug category
No violation of precision−oracle in the potential−bug category
No violation of cuda−oracle in the compare−bug category
No violation of cuda−oracle in the potential−bug category
No violation of crash−oracle in the compare−bug category
No violation of crash−oracle in the potential−bug category
−> torch.logsumexp did not face any failures
−> torch.autograd.grad did not face any failures
Reproduced 0 out of 2 bugs

The execution log shows that the tool did not reproduce any
of the two bugs that were expected to be reproduced. Among
the two buggy APIs, FreeFuzz supports torch.logsumexp but the
bug could not be reproduced, whereas FreeFuzz does not support

torch.autograd.grad. The outputs from the tool are saved in the
container so that the execution log can be inspected further man-
ually. From this result, the developer can debug and refine their
technique to catch bugs that it missed, as well as add support for
APIs that are currently unsupported.

4.3 Contributions
BugsInDLLs allows users to contribute to the dataset by adding
new bug instances. This opens up the tool to the community to help
in expanding the dataset and improving the quality of the dataset.
The following steps show how to contribute a new bug instance:
(1) Identify issues in the issue tracker of the library of interest;
(2) Create an issue in the repository of BugsInDLLs with the tem-

plate "Reproduce Bug" (available in the repository);
(3) Create a branch linked to the issue;
(4) Add a self-contained bug reproduction script in a sub-directory

named with the GitHub issue identifier under the directory of
the library;

(5) Prepare the execution environment (Docker containers [12] for
CUDA-dependent bugs, Conda Enviroment [4] for others);

(6) Follow the steps in 3.3 to create the bug reproduction script;
(7) Update the spreadsheets of the library with bug details;
(8) Create a pull request to the main branch.

5 Related Work
Several bug datasets have been proposed in literature for general
software. Some popular examples includes software-artifact infras-
tructure repository (SIR) [5] which was one of the bug datasets
containing 81 artificial faults in projects across multiple languages,
Defects4J [9] which includes 357 real bugs across five large real-
world Java projects, BugsInPy [23] containing 493 real bugs from
17 real-world Python programs, and BugsJS [19] containing 453
bugs across 10 Javascript projects. Google’s FuzzBench [14] pro-
vides an evaluation platform for comparing general purpose fuzzers.
Magma [8] is another fuzzing benchmark built by front-porting real
bugs in latest version of projects. In contrast to these general pur-
pose benchmarks, BugsInDLLs includes reproducible bugs for Deep
Learning libraries like PyTorch and TensorFlow, and allows system-
atic benchmarking for DLL fuzzers.

6 Conclusion and Future Work
Deep Learning Libraries provide the basic blocks for creating AI-
enabled applications. Several testing techniques have been proposed
in the literature to find bugs in these libraries. Unfortunately, the
lack of a dataset of reproducible bugs in those libraries poses an
important barrier to the proper evaluation of these techniques.
BugsInDLLs fills this gap. It includes a total of 112 bugs across
three major DL libraries and provides an infrastructure to evaluate
fuzzers. To facilitate evaluation of testing techniques even further
we plan to continue expanding this dataset and to explore auto-
mated approaches to “frontport” bugs into single version of the
library as in the Magma benchmark [8].
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A Walkthrough
Section 4.2 demonstrates usage of BugsInDLLs. The reader can also
follow the steps in the README.md file on our GitHub repository.
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