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ABSTRACT
Many machine learning (ML) algorithms are inherently random –

multiple executions using the same inputs may produce slightly dif-

ferent results each time. Randomness impacts how developers write

tests that check for end-to-end quality of their implementations of

these ML algorithms. In particular, selecting the proper thresholds

for comparing obtained quality metrics with the reference results

is a non-intuitive task, which may lead to flaky test executions.

We present FLEX, the first tool for automatically fixing flaky tests

due to algorithmic randomness in ML algorithms. FLEX fixes tests

that use approximate assertions to compare actual and expected

values that represent the quality of the outputs of ML algorithms.

We present a technique for systematically identifying the accept-

able bound between the actual and expected output quality that

also minimizes flakiness. Our technique is based on the Peak Over

Threshold method from statistical Extreme Value Theory, which

estimates the tail distribution of the output values observed from

several runs. Based on the tail distribution, FLEX updates the bound

used in the test, or selects the number of test re-runs, based on a

desired confidence level.

We evaluate FLEX on a corpus of 35 tests collected from the latest

versions of 21 ML projects. Overall, FLEX identifies and proposes a

fix for 28 tests. We sent 19 pull requests, each fixing one test, to the

developers. So far, 9 have been accepted by the developers.
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1 INTRODUCTION
Many emerging applications in computer vision, natural language

processing, and medical diagnosis are implemented using Machine

Learning (ML) algorithms such as Deep Learning [31], Reinforce-

ment Learning [43], or Probabilistic Programming [32, 33]. The

recent pervasiveness of ML algorithms has led to the emergence of

general-purpose libraries and specialized tools that build on top of

these libraries. Many ML algorithms are inherently random – each

execution of the algorithm may produce a slightly different result.

Such randomness has an impact on how to carefully check the im-

plementations of these algorithms, because the tests have to account

for the variability of computed results from the code under test.

A common class of tests in existing ML projects are integration

tests that check for end-to-end quality of the implementation of

an ML algorithm. Such tests typically 1) create a small fixed or

randomly generated dataset, 2) train the model on the dataset,

3) perform inference on the trained model, and 4) compute quality

metrics and check if they are acceptable. Some common quality

metrics include inference accuracy, recall, and error rate. When

developers write their tests, they implement property checks using

approximate assertions [18, 19, 54] that compare the metric to an

acceptability bound, e.g.,

assert (accuracy > α ).

Developers typically choose the bounds based on intuition and

experience with the code under test. These choices are often ad-hoc

and not well-understood, especially when the developers are testing

implementations of ML algorithms that inherently rely on some

degree of randomness.While randomness in implementations ofML

algorithms can be controlled through setting seeds in the underlying

pseudo-random number generator(s), doing so can make the test

less effective as it limits possible executions that can potentially help

expose real bugs in the implementation [19]. However, by keeping

randomness throughout, the tests may become flaky [49] – test

executions can fail non-deterministically even when there is no bug

in the implementation. The chance of flaky test failures depends on

how tight the developer-selected bound α is. An important question
then becomes how to systematically select such bounds so that test
flakiness can be minimized to a desirable level.
Our Work. We present FLEX, the first tool for automatically fix-

ing flaky tests due to algorithmic randomness. FLEX focuses on

tests that use approximate assertions to compare the actual and

expected quality of ML algorithm results. FLEX transforms the test

and systematically selects appropriate assertion bounds that reduce

the chance of flaky failures.

The key challenge is to determine how to estimate appropriate

assertion bounds with high statistical confidence. FLEX’s solution is

https://doi.org/10.1145/3468264.3468615
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based on Extreme Value Theory (EVT). EVT [14, 26, 64] is a branch

of statistics, often used in finance and hydrology, that can model

extreme events, such as market risks (finance) or occurrence of

extreme floods (hydrology). Given an input sample ofmeasurements

of some observed variable, EVT models the tail of the distribution,

which can then be used to compute the likelihood of extreme values.

The advantage of using EVT is that, in the limit, the tail distribution

will converge to a specific group of probability distributions.

We use the Peak Over Threshold (POT) [64] method from EVT

to estimate the tail distribution of a ML algorithm’s result quality.

With this method, the tail distribution converges in the limit to an

instance of the Generalized Pareto Distribution (GPD) [64]. GPD

is parameterized by a shape parameter, which determines if the

measured quantity has a tail (left or right) that is exponentially
bounded. An exponentially bounded tail converges quickly to GPD

and can be used to estimate an appropriate bound for the variable

in the failing assertion. On the other hand, a heavy tailed distri-

bution cannot provide a reasonable estimate. In such a case, we

either collect more samples (to get a better estimate) or resort to

alternative test fixing strategies.

FLEX records the actual values in the assertion (e.g., the vari-

able accuracy in the example assertion earlier) from multiple ex-

ecutions. It then uses the recorded values to estimate the GPD

as representative of the tail distribution. Since the tail distribu-

tion converges to GPD only in the limit, FLEX uses statistical

methods to find the sufficient number of samples of the output

value that leads to convergence. FLEX then uses the inferred GPD

to determine the likelihood of the extreme values and choose

an assertion bound α that keeps the chance of the test failure

below a pre-specified probability C .
FLEX implements several test fix strategies to reduce flakiness:

• Update the assertion using a statistical tail bound: FLEX
handles two kinds of assertions. First, for assertions that compare

the absolute values (e.g., the variables accuracy and α from our

earlier example assertion), FLEX collects the samples of the actual

value accuracy, computes the bound satisfying the confidence

level using POT, and updates the constant α with the new bound.

Second, for assertions that use bounds for differences between

two values, FLEX estimates the tail distribution of the differences

and updates the bound based on the tail estimate.

• Update the assertion using an empirical bound: FLEX up-

dates the assertion as in previous strategy, but instead of comput-

ing GPD, it uses an empirical bound computed using bootstrap

sampling [22]. It is used when the POT method fails to compute

the tail distribution or produces a heavy-tailed distribution.

• Rerun the test to improve confidence: FLEX does not modify

the test body, but marks it using the @flaky annotation [25] so

that the test is re-run on failure, only declaring true failure if it

fails for all re-runs; this annotation then reduces the chance of

a flaky failure stopping a build. Currently, developers may use

reruns and specify the number of repetitions based on some intu-

ition. Instead, FLEX determines the number either from the esti-

mated GPD (when available) or using the observed failure rate.

Updating the thresholds in the assertions does not change the

execution time of the test. However, re-running the test can increase

the overall execution time (as a function of the failure probability).

Results.We evaluate FLEX on a corpus of 35 existing flaky tests

collected from the latest versions of 21 projects, which use one of six

popular Machine Learning and Probabilistic Programming frame-

works: PyTorch [61], TensorFlow [76], TensorFlow-Probability [16],

Pyro [7], PyMC3 [71], and NumPyro [57]. The dependent projects

provide domain specific functionalities and have a wide user base.

FLEX proposes a fix for 28 tests (Section 7.1). It selected the

statistical tail bound strategy in 17 cases, empirical bound strategy

in 2 cases, and re-run strategy in 9 cases. For the remaining 7 tests,

FLEX determines that the current assertion bound is looser than

what FLEX suggests. Hence, we do not propose fixes for those

cases, as the flaky failures, if they occur, are statistically rare. We

sent 19 pull requests, each fixing one test, to the developers. So

far, 9 pull requests have been accepted by the developers, 4 are

pending, and 6 have been rejected. Of the 6 rejected pull requests,

the developers mostly acknowledged the flakiness and chose to fix

the problem in their own way custom to the project. These results

jointly demonstrate that our approach can reduce the flakiness of

tests by proposing appropriate assertion bounds for pre-specified

confidence levels.

Contributions. This paper makes the following contributions:

• We present FLEX, the first technique for automatically fixing tests

that are flaky due to algorithmic randomness in ML algorithms.

• We present a novel test fixing algorithm that leverages statistical

techniques from Extreme Value Theory to guide several test

modification strategies.

• We evaluate FLEX on a corpus of 35 flaky tests, fixing 28 tests

while determining that the rest do not need fixes. FLEX is publicly

available at https://github.com/uiuc-arc/flex.

2 EXAMPLE
We present an example flaky test whose assertion is not properly

bounded, leading it to pass and fail non-deterministically when run

multiple times on the same version of code. The flaky test is named

test_ground_truth_separated_modes, from ICB-DCM/pyPESTO,
a library for parameter estimation that provides state-of-art al-

gorithms for optimization and uncertainty analysis of black-box

objective functions [65].

Listing 1 presents the (simplified) test code. The test first initial-

izes a sampler using the Adaptive Metropolis Sampling algorithm,

which is a Markov Chain Monte Carlo (MCMC) method (Line 2). It

initializes a dataset for the test, which is sampled from a mixture of

two Gaussian distributions (Line 3). The test then defines the objec-

tive function that needs to be optimized. In this case, the objective

function measures whether the generated MCMC samples resem-

ble the target mixture distribution using a negative log likelihood

metric (not shown here). Then, the test uses the MCMC sampler

to find a solution to the problem that uses 1000 iterations for sam-

pling (Line 4). The test compares the results of the sampler with the

expected ground truth (Line 8) using the Kolmogorov-Smirnov (KS)

test [59], a popular statistical procedure used to find the distance

between two probability distributions (lower is better). The test

checks whether the KS distance/statistic is below 0.1 (Line 9).

We found that this flaky test fails 17 out of 500 times we run it on

the same version of code. Our inspection found that the computed

KS statistic varies due to inherent randomness of the code under

https://github.com/uiuc-arc/flex
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1 def test_ground_truth_separated_modes():
2 sampler = sample.AdaptiveParallelTemperingSampler(internal_sampler=

↪→ sample.AdaptiveMetropolisSampler(), n_chains=3)
3 problem = gaussian_mixture_separated_modes_problem()
4 result = sample.sample(problem, n_samples=1000, sampler=sampler, x0=np.

↪→ array([0.]))
5 samples = result.sample_result.trace_x[0, :, 0]
6 rvs1 = norm.rvs(size=5000, loc=-1., scale=np.sqrt(0.7))
7 rvs2 = norm.rvs(size=5001, loc=100., scale=np.sqrt(0.8))
8 statistic, pval = ks_2samp(np.concatenate([rvs1, rvs2]), samples)

9 -assert statistic < 0.1

9 +assert statistic < 0.2

Listing 1: Fix for test in ICB-DCM/pyPESTO

1 def _propose_parameter(self, x: np.ndarray):

2 x_new = np.random.multivariate_normal(x, self._cov)

3 return x_new

Listing 2: Source of randomness for example flaky test

Figure 1: Distribution of values from example flaky test

test; such variance in computed values is common in machine

learning (ML) projects [19]. The source of randomness in this test

is in the Adaptive Metropolis Sampling algorithm. The sampling

algorithm makes some random choices during its execution such

as choosing the next sample (from a distribution) for a parameter

that is being estimated. Listing 2 shows the corresponding code

snippet. Since the sampler runs for a finite number of steps (1000 in

this case), the solution may sometimes be further from the ground

truth values than what is expected. As a result, the KS statistic can

sometimes exceed 0.1, causing the test to fail.

We collected the actual computed values of the KS statistic at

the failing assertion (Line 9) from several test executions. Figure 1

shows the distribution of the collected samples. Clearly, we see that

some values exceed the expected bound (0.1) originally set by the

developers.We assume the code under test is implemented correctly,

so we would then need to repair the test code, providing a more reli-

able assertion bound to ensure it fails less often due to randomness.

To compute a better assertion bound, we need to examine the

tail of this distribution and also provide statistical confidence in

our estimation. A naive strategy here might be to use the observed

extreme value as the new bound (0.15 here). However, this strategy

does not give statistical confidence that the execution will never

result in an even more extreme value. Another workaround might

be to set the bound to a large value, say 1.0. However, doing so can

lead to the test missing bugs whichmanifest as accuracy regressions.

Ideally, we want to determine a value that is both large enough as

to minimize the flakiness and tight enough as to not miss bugs.

We leverage methods from Extreme Value Theory (EVT) to com-

pute a bound with high statistical confidence (Section 3). These

methods take as input a set of samples of the observed variable (e.g.,

Figure 2: Estimated Tail Distribution (Exponential) and cor-
responding percentile estimates

statistic) and return a curve representing the tail (left/right) of

the distribution. We can then use the tail distribution to estimate

the most probable extreme value (max/min) for a pre-specified con-

fidence level. In this example, since we want to find the maximum

bound of statistic, we need to inspect its right tail. Using EVT

method Peak Over Threshold, we are able to fit an exponential

distribution to the tail samples (see Figure 2). We estimate this dis-

tribution using only 100 samples collected from executing this test.

To check for goodness of fit and confirm that we do not need more

samples, we use a sequence of statistical hypothesis tests (GPD

test [4, 10]). Using this distribution, we can ultimately determine

that the assertion bound should be 0.2, which ensures the computed

values will lead to a passing assertion 99.9 percent of the time (the

assertion bound is at the 99.9th percentile for the tail distribution).

We do not choose the 99.99th percentile (0.3) in this case, since

it seems to be too extreme. We sent a pull request that changes

the assertion bound to this value to the developers of this project.

The developers accepted and merged this pull request, leaving a

message: “Thanks for this contribution! I think checking the test per-
centiles is the way to go indeed” [66]. Further, we also collected 1

million samples for this test and observed that our predicted bound

indeed matches this empirical percentile.

An alternative strategy to fix such tests might be to fix the seed

in the random number generator(s) (RNG) that are being used,

which would make the test execution more deterministic. However,

setting the seed can also make the test more brittle: future changes

in code under test or the RNG can break the test. Also, it can hide

potential bugs since the test will always observe the same set of

values from the RNG. In this example, the developers also agreed

on this point saying: “I think checking the test percentiles is the way
to go indeed (unless we set the RNG, which we however rather don’t
want to atm)” [66].

3 BACKGROUND: EXTREME VALUE THEORY
Extreme Value Theory (EVT) encompasses statistical methods that

model the probability of extreme events (e.g., those more extreme

than any event observed so far). We will next describe EVT and

related statistical methods that we use in our approach. We will use

the standard notation from the probability theory: X will denote

a random variable, X1, . . . ,Xn will denote random variables, each

representing observed samples of X , and F (X ≤ x) (or equivalently
F (x)) will denote the cumulative distribution function (CDF) of the

random variable X . It denotes the probability that the value of X
is smaller than a constant x . To make distribution parameters θ
explicit, we will write F (x ;θ ).

To characterize the probability of extreme events, EVT studies

values which are relatively smaller/larger (i.e. belong to the tail
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region) than the rest of the observations in the sample, and uses

them to model the tail (right/left) of the distribution.

Peak Over Threshold (POT). For a random variable X , the POT
method [64] takes as input a set of independent and identically

distributed (i.i.d.) samples: X1, . . . ,Xn , and outputs a distribution
representing the tail of the distribution of X . The POT method uses

a user-specified threshold T to select a subset of samples that exceed

the threshold. This threshold helps select values from the tail of

the distribution. POT represents the tail of arbitrary continuous
distributions using exceedance probability. Given a random variable

X , with CDF FX , we define exceedance probability FT as the CDF

of X above threshold T :

FT (y) = P(X −T ≤ y | X > T ) =
F (T + y) − F (T )

1 − F (T )
(1)

where 0 ≤ y ≤ xF − T , where xF is the rightmost endpoint of

F or infinity. Prior work [5, 64] showed that for a large class of

continuous distributions F and large T , FT can be approximated by

a Generalized Pareto Distribution (GPD), i.e., FT (y) converges in
distribution to G(y) as T →∞, where

G(y;T ,σ , ξ ) =

1 −
[
1 + ξ

y−T
σ

]−1/ξ
if ξ , 0

1 − exp−(y−T )/σ if ξ = 0

(2)

Here, T , σ , and ξ correspond to location, scale, and shape, respec-
tively. These parameters can be estimated using Maximum Like-

lihood Estimation (MLE) methods [53]. The shape parameter, ξ ,
determines the nature of the tail: light, exponential, or heavy.

Figure 3: Example CDF plots for light, exponential, and
heavy tailed GPD distributions with ξ = −0.5, ξ = 0, and
ξ = 0.5 respectively (µ = 0 and σ = 10)

Figure 3 presents an example of how different kinds of tail distri-

butions behave. The exponential-tailed distributions and light-tailed
distributions (defined as having less probability mass in the tail

than exponential) converge very fast and can provide reasonable

estimates of the extremes. However, the heavy-tailed distribution
(defined as having more probability mass in the tail than exponen-

tial) converges very slowly. Computing an assertion bound in a high

percentile for such a distribution would result in a very extreme

value that may be an impractical assertion bound for a test.

Estimating Parameters of GPD. Given a set of observations

S = x1, . . . , xn , the location, scale, and shape parameters of GPD

can be estimated using Maximum Likelihood Estimation (MLE)

methods. MLE methods compute the point estimate of distribution

parameters that maximize the likelihood that distribution produces

the observed data. Formally, the likelihood function can be de-

fined as P(θ |S) = P(θ |x1) · P(θ |x2) · . . . · P(θ |xn ) = Πn
i=1P(θ |xi ),

where θ is the set of parameters of GPD distribution. MLE then

obtains the parameter estimates that maximize this likelihood:

argmaxθ
∏n

i=1 P(θ |xi ). Intuitively, it selects parameter values such

that observed data is most probable. As the number of observations

grows, theMLE estimates converge in probability to the true values.

Goodness-of-fit vs. Samples Count. According to POT, the tail

distribution is guaranteed to converge to the GPD distribution in

the limit [26, 64]. However, it is unknown how many samples may

be needed for convergence in practice, especially if the distribution

has a heavy tail. The choice of threshold T determines a trade-off

between goodness of fit and minimum samples required for conver-

gence. Researchers have proposed several heuristics for choosing

appropriate thresholds.

In this work, we adopt the methodology proposed by Bader et

al. [4] for automated threshold selection using goodness of fit tests.

The precise problem can be stated as follows: Given a sequence

of samples X1, . . . ,Xn of size n, we want to determine the lowest

threshold T such that the GPD fits the exceedances Yi = Xi − T
adequately. Bader et al. propose using a sequence of goodness of

fit tests for the GPD over each candidate threshold in an increas-

ing/decreasing order until the stopping criteria is reached.

For an ordered set of thresholds: T1 < ... < Tl , let there be zi
exceedances, i ∈ {1, . . . , l}, for each threshold. The sequence of null
hypotheses can be stated as “H i

0
: The distribution of zi exceedances

aboveTi follows the GPD.” The alternative hypotheses are “H i
1
: The

distribution of zi exceedances above Ti does not follow the GPD.”
We use the non-parametric Anderson-Darling test [10] (as rec-

ommended by Bader et al.) for this hypothesis test. To reduce the

chances of choosing the wrong threshold by mistake (also known

as False Discovery Rate or FDR), the authors introduce special stop-

ping criteria when evaluating these hypotheses. In particular, we

test each threshold, starting from the highest, and stop if the fol-

lowing criteria is satisfied: exp

(∑l
j=k

logpj
j

)
≤

γ ·k
l where γ is the

False Discovery Rate (probability of choosing a wrong threshold),

k ∈ {1, . . . , l} is the index of the current threshold, and pj is the

p-value returned by the jth hypothesis test H
j
0
. This technique al-

lows for a principled way to select a reliable threshold and check

whether a GPD can be fit. When one or more of the hypothesis

tests pass based on the stopping criteria, we say that the samples

converged to a GPD and choose the lowest threshold for further

analysis. If all the hypothesis tests fail, this means that we may

need more samples. We abstract this check using StopTest function
in our algorithm (Section 4.2).

Box-CoxTransformation.Box-Cox transformation [8] is a power

transform that can create a monotonic transformation of data (i.e.

preserves the original order of values). This transformation is useful

in making the data closer to a normal distribution and stabilizing

its variance. Normality is a key assumption in many statistical anal-

yses. Hence, applying the Box-Cox transformation can enable a

broader range of analyses on the data. The Box-Cox transformation

can be described as follows:

y
(λ)
i =

{
yλi −1
λ , λ , 0;

log yi , λ = 0;

(3)

where λ is a parameter that can be estimated from the samples using

MLE methods. It can only be applied when yi > 0, i ∈ {1, . . . ,n}.
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Teugels and Vanroelen [77] showed that applying Box-Cox trans-

formation can be useful in presence of heavy tails and can lead to

faster convergence. Further, Helsel and Hirsch [36] showed that

quantiles (or percentiles) are invariant to monotonic transforma-

tions. Hence, Qτ (f (Y )) = f (Qτ (Y )), where Q is the quantile func-

tion, τ ∈ (0, 1) is any given quantile, f is the monotonic transfor-

mation, and Y is the set of samples. There is no known guarantee

that applying the Box-Cox transformation on data will prove to be

always useful for any given statistical analysis [58]. However, it

is a useful heuristic that can help speed up or even enable finding

convergence for a distribution.

4 FLEX
We propose FLEX, a technique for fixing flaky tests caused by inher-

ent algorithmic randomness in ML projects. FLEX assumes that the

code under test is implemented correctly and thus considers tests

that fail some of the time to be flaky and in need of repair. Given

an assertion A in a test T of the form assert X < α , FLEX per-

forms the following steps: 1) Collect and pre-process the samples

X1, . . . ,Xn of actual value X from several test executions, 2) Deter-

mine the lowest possible threshold T such that a GPD, GX , can be

fit to Yi = Xi − t, i ∈ {1, . . . ,n}, with a confidence of at least 95%

using the Goodness-of-fit approach described in Section 3, 3) Es-

timate the most probable bound B from GX for X , based on the

desired confidence level C ∈ (0, 1), as provided by the developer,

and update the assertion bound to B. For instance, if C = 0.99 then

we determine B such that P(X ≤ B) ≥ 0.99.

4.1 FLEX Algorithm
Algorithm 1 describes the main FLEX algorithm. It takes a test T,

an assertionA in the test, and a confidence thresholdC as input and

returns the fixed version(s) of the test T∗ as output. Intuitively, the

algorithm executes T several times and collects the samples from

the values being compared in the assertion until either the tail distri-

bution converges to a light or exponential tail or the number of sam-

ples collected exceeds the maximum sampling limit (MAX_SAMPLES)
and therefore we consider to not converge.

In each iteration of the loop (Lines 7-18), we execute the test

N times and collect samples from the assertion (Line 8). We add

the new samples to the existing set, Samples, and check if the tail

distribution converges to a light or exponential tail (Lines 9-10). The

estimation algorithm TailBoundEstimator (Section 4.2) takes the

samples Samples, assertionA, a flag F to enable/disable the Box-Cox

transformation (Section 3), and confidence level C as inputs. When

a distribution has a light or exponential tail, the distribution has

a finite bound and hence can be used to fix the test assertion. On

the other hand, if the distribution does not converge or has a heavy

tail, we might need more samples to get a better estimate. If we

fail to get a bound, then we try to get an estimate by enabling the

Box-Cox transformation (Line 12). We choose to check convergence

first without transforming because the transformation adds extra

overhead. Note that Box-Cox can be applied only on positive data. If

all the samples are negative, then we change the sign of the values

before the analysis and revert the sign of the results if the analysis

succeeds. However, if we have a mix of positive and negative values,

we do not apply this transformation.

Algorithm 1 FLEX Algorithm

Input: Test T, Assertion A, Confidence level C
Output: Fixed test T∗

1: procedure FLEX(T, A,C )

2: Conv← False
3: D ←⊥
4: Samples← ∅
5: N← INITIAL_SAMPLE_SIZE
6: Bound←∞
7: while |Samples | < MAX_SAMPLES do
8: S ← TestRunner(T, A, N)
9: Samples← Samples ∪ S
10: Conv, D, Bound← TailBoundEstimator(Samples, A, False,C)
11: if not Conv or not isLightOrExp(D) then ▷ Enable transform

12: Conv, D, Bound← TailBoundEstimator(Samples, A, True,C)
13: end if
14: if Conv and isLightOrExp(D) then
15: break
16: end if
17: N← NEXT_SAMPLE_SIZE
18: end while
19: return Patcher(T, A, Samples, D , Bound)
20: end procedure

We continue the loop until the sample size exceeds a user-set

limit MAX_SAMPLES or if the tail converges to light or exponential
distribution (Lines 14-16). Finally, FLEX patches the test using dif-

ferent available fix strategies depending on whether it finds a finite

bound or not (Section 5) and returns the patched test (Line 19).

4.2 Estimating the Statistical Tail Bound
Given a set of samples collected from test executions, the tail estima-

tion algorithm applies the Peak Over Thresholds (POT) method to

select values from the tail of the distribution (based on a threshold)

and check if they converge to a tail distribution (which belongs to

the Generalized Pareto Distribution (GPD)). However, selecting an

appropriate threshold is non-trivial and can affect convergence. In

this work, we use an automatic threshold selection technique [4]

to compare different threshold choices (discussed in Section 3,

Goodness-of-fit) and choose the lowest threshold that passes the

GPD test [10], meaning it fits adequately to a GPD distribution.

Algorithm 2 shows the tail bound estimation algorithm, Tail-
BoundEstimator. The algorithm takes as input a set of samples S , an
assertionA, a flag F on whether or not to enable the Box-Cox trans-

formation, and a confidence level C for choosing the bound. For

the threshold that the POT method needs, we iterate over a set of

possible, user-defined thresholdsM (Line 5). Any value exceeding

a threshold is considered to be part of the tail of the distribution

and is used to fit to a distribution that helps compute the bound.

For each threshold t , we compute the exceedances (Line 11). We

apply the GPD test for convergence and compute the p-value p.
We also obtain the shape (Light/Exp/Heavy) and specification of

the distribution D if it converges (Line 15). If the GPD test suc-

ceeds (i.e., p > SIGNIFICANCE_LEVEL), and we obtain a light or

exponential distribution (Line 20), then we estimate the bound B by

computing the extreme percentile (QC ) for the distribution such as

99th or 99.99th (Line 21). If the Box-Cox transformation is enabled,

the ComputePerc method also transforms the bound back to the

original scale of the samples. If we obtain a mildly heavy tail (e.g.,

0 < ξ < ε , for some small ε), we can still approximate it using an

exponential distribution in some cases. We use the Likelihood Ratio
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Algorithm 2 Tail Bound Estimation Algorithm

Input: Samples S , Assertion A, Enable Transformation F , Confidence level C
Output: Convergence result Conv, GPD distribution D, Bound B

1: procedure TailBoundEstimator(S , A, F ,C )

2: if F then
3: S ← Transform(S )
4: end if
5: M ← GetThresholds(S )
6: D ←⊥
7: B←∞
8: Conv← False
9: P ← �
10: for t ∈ SortedDescending(M ) do
11: exc← {x − t |x > t , x ∈ S } ▷ POT method

12: if |exc | < MIN_TAIL_SAMPLES then
13: continue
14: end if
15: p ← GPDTest(exc) ▷ Convergence Test

16: P ← P ∪ p
17: if p > SIGNIFICANCE_LEVEL then ▷ Check if converged

18: D ← FitGPD(S )
19: Conv← True
20: if isLightOrExp(D) then
21: B ← ComputePerc(D ,C , t , F ) ▷ Find new bound

22: else
23: D′ ← FitWithLRT(D) ▷ Approximate to exponential

24: if D′ ,⊥ then
25: B ← ComputePerc(D′,C , t , F )
26: D ← D′
27: end if
28: end if
29: end if
30: if StopTest(P ) then ▷ Stopping criteria for hypothesis test

31: break
32: end if
33: end for
34: return Conv, D, B
35: end procedure

Test [34] as a hypothesis test to check if original distribution and

the exponential distribution obtained by fitting to the samples are

not significantly different. We use the estimate if the hypothesis test

passes (Lines 23-27). The FitWithLRT function (Line 23) abstracts

this test and fitting to exponential distribution. If the stopping cri-

teria (StopTest, described in Section 3) for the hypothesis tests is

satisfied, we break out from the loop (Line 30).

When considering possible thresholds, we iterate through them

in descending order, because we would like to select the lowest

threshold (which in turn selects more samples from the tail region)

to obtain a reliable estimate of the bounds of the distribution. Finally,

the algorithm returns the status of convergence Conv, the GPD

distribution D, and the estimated bound B.

4.3 Implementation of FLEX Components
We describe details on how we implement the main components

for FLEX. We implement FLEX in Python.

Test Runner. It takes as input a test T, an assertion A within T,

and the number of times to run N . First, Test Runner instruments

testT to log the actual and expected values used in the assertion A.
For instance, for an assertion of the form assert_allclose(a,b), it will
instrument the assertion to log values a and b before the assertion.

Second, it will execute the test N times, parse the values of a and b
from the execution logs and return it to the caller. Test Runner uses
pytest [68], a popular library for executing tests in Python projects.

Tail Bound Estimator. It implements the algorithm described

in Section 4.2 to 1) check whether the tail distribution has con-

verged and 2) to estimate an appropriate bound for the assertion

A if the distribution converged and has a light or exponential tail.

We use the “Eva” package in R [23] for the GPD test. We use the

Box-Cox implementation in scipy to transform (or inverse trans-

form) the samples. We choose the common significance level of

0.05 for the GPD test. For StopTest check, we use the false discovery
rate (γ ) of 0.05.
Patcher. The Patcher module takes a test T, assertion A in the

test, all collected samples Samples, fitted GPD D, and the proposed

bound B as input and provides one or more fixed version(s) of the

test as output. If B is not ∞, it updates the assertion in the test

accordingly (Section 5.5) and returns the patched test to the caller.

Otherwise, it may also propose other fixes for the test. We discuss

each fix strategy in Section 5.

5 TEST FIXING STRATEGIES
FLEX provides three different strategies for automatically fixing and

updating a flaky test depending on whether a finite tail bound can

be computed using EVT and the nature of the assertion (Sections 5.1-

5.3). FLEX may also choose not to fix a test (Section 5.4) when it

deems that the original bound is already looser than our proposed

bound (indicating that failures are statistically rare). When multiple

fixes are proposed by FLEX, we first we fix a test using the statistical

bound when available. Otherwise, we use the empirical bound for

the fix. If the estimated confidence interval for the empirical bound

is too high, we choose to re-run the test instead. We may also need

to adapt our strategy based on the context, (see Section 6.3).

5.1 Using the Statistical Tail Bound (SB)
If we obtain a light or exponential tailed distribution using Algo-

rithm 2, then the distribution has a finite bound. We then simply

compute the extreme percentiles (e.g., Q0.99 or Q0.9999), based on

developer specified threshold C , to find a value that is higher (or

lower) than the original bound used in the assertion and update

the assertion with the new bound. The fixed assertion then has a

failure probability of approximately 1 −C .

5.2 Using the Empirical Bound (EB)
If the tail bound estimation algorithm (Algorithm 2) fails to con-

verge or provide a finite bound (a heavy tail distribution), FLEX

estimates an empirical bound from the observed executions. FLEX

uses bootstrap sampling [22] to re-sample (with replacement) sev-

eral times from the available samples and compute the extreme

(max/min) from each instance of re-sampled data. As a result, FLEX

obtains the set of sample extremes, E, and returns user-specified

statistic of this set (e.g., Qτ (E), mean, or median) as the new em-

pirical bound. FLEX also computes the 95% confidence interval

(|Q0.975(E) −Q0.025(E)|) which denotes the variability in the empir-

ical bound – a smaller confidence interval indicates the empirical

bound is close to the true bound.

5.3 Re-Running the Test (RR)
The Flaky [25] plugin for pytest allows the developers to automati-

cally re-run the test on failure. To use this plugin, a developer needs
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to annotate the test using @flaky. This plugin also allows addi-

tional parameters: max_runs (default 2) and min_passes (default
1). The plugin runs the test up to max_runs times until it passes

max_passes times. FLEX can annotate the test based on its observed

failure rate during its analysis, i.e. re-using the observed executions

at the end of Algorithm 1. FLEX computes the number of re-runs

in the following two ways: 1) FLEX computes the empirical failure

probability of the test: p =
#failures
#runs . Then it computes the number

of re-runs using: n = ⌈log (1 −C)/log p⌉, whereC is the developer

provided confidence level (as in Algorithm 1) for minimum pass-

ing probability. 2) If the distribution converges to a heavy tail, we

can also compute the probability that a sample exceeds the current

bound set in the assertion. For instance, letD be the tail distribution

(GPD) returned by Algorithm 2 and α be the current bound used

in the test. Then, we can compute P(x ≥ α) = 1 − D(α), which is

the failure probability of the assertion. We can then compute the

re-runs similar to the previous case using this probability.

Unlike other approaches, re-running may increase the average

running time of the test. Specifically, if the run time of the test isW ,

the expected run time of the test will be

∑n
k=1 p

k−1 · (1 − p) · k ·W .

5.4 Not Fixing a Test (NF)
In some cases, FLEX may propose a bound that is very close to, or

tighter than the original bound, indicating that the assertion bounds

are already conservative. This case indicates that test failures, if

they occur, are extremely rare events. As such, we report, but do

not propose the fix to the developers.

5.5 Updating Assertions
We describe how FLEX updates an assertion when a statistical or

empirical bound for an assertion can be computed.

Assertions comparing absolute values. This category includes

assertions that either compare with a computed value or with a

constant. Some examples include the Python assert statement:

assert [x > | < | >= | <=] α , and some other APIs in unittest

(e.g., assertGreater(x,α) , assertLess(x,α)) and numpy (e.g.,

assert_array_less(x,α)). To fix an assertion, FLEX simply re-

places α with the bound it computes. Listing 3 shows an example

of such a fix from the ICB-DCM/pyPESTO project.

-assert statistic < 0.1

+assert statistic < 0.2

Listing 3: Fix for test in ICB-DCM/pyPESTO

Assertions using tolerance thresholds. Some assertions check

whether the relative or absolute difference between two floating-

point values is less than a threshold. Some examples include numpy

APIs such as: assert_almost_equal(a,b, decimal = C), and also

assert_allclose(a,b, rtol = C1, atol = C2), where C , C1, and

C_2 are the relative and absolute thresholds respectively. In these

cases, FLEX collects the values of both a and b from test executions

and computes the absolute or relative difference from each execu-

tion. FLEX estimates the tail distribution using these differences

as samples. It updates the assertion to either use a lower tolerance

threshold or reduce the decimal places being compared depend-

ing on the kind of assertion. Listing 4 shows an example from the

microsoft/hummingbird project for absolute tolerance fix.

-assert_allclose(model.predict(X),torch_model.predict(X),rtol=1e-4,atol=1e-5)

+assert_allclose(model.predict(X),torch_model.predict(X),rtol=1e-4,atol=1e-4)

Listing 4: Fix for test in microsoft/hummingbird

6 METHODOLOGY
6.1 Projects and Flaky Tests
We follow a similar methodology as Dutta et al. [19] to select ma-

chine learning projects for our evaluation. We start with two popu-

lar machine learning libraries (PyTorch [61] and TensorFlow [76])

and four probabilistic programming systems (Pyro [7], NumPyro [57],

TensorFlow-Probability [16], and PyMC3 [71]) on GitHub. We use

GitHub’s feature to track the projects dependent
1
on these libraries

and also have more than 10 stars, as an indication of popularity.

Table 1: Details of projects used

Project Dependent Filtered

TensorFlow 836 100

PyTorch 906 100

TensorFlow-Prob 283 100

NumPyro 3 3

Pyro 13 13

PyMC3 31 31

Total 2072 347

Unique 1836 305

Successful at Testing - 144

Projects with Flaky Tests - 21

Some of these core libraries can have hundreds of dependents,

so we only select the top 100 dependent projects per library for

our study. Table 1 shows all the project details. Overall, we select

305 unique projects. We develop a general installation script to

install these libraries, which creates a virtual python environment

using Anaconda [1], and then it installs the library and all its depen-

dencies in the environment along with some libraries for testing,

such as pytest. In Python libraries, developers typically specify all

dependencies in the setup.py file, which is the main installation

module. They can also specify additional dependencies (e.g., for

building documentation and testing) in a requirements.txt file.
However, in some cases, the installation process may not work due

to incomplete dependency specifications, missing system depen-

dencies (such as SQL server client or open-mpi library), or required

specialized build/testing systems (such as Bazel [6]). Our installa-

tion script installs a general set of system dependencies but relies

on pip and pytest to build and test the libraries. Overall, we are able

to successfully install and test 144 projects.

Of the resulting 144 projects, we ran their tests using FLEX’s Test

Runner module, running only the tests with approximate assertions

that we support. Initially, we run each test up to 30 times while

1
We use only dependent “packages” as reported by the GitHub API, which are projects

that can be installed as a library to be used by others. We use packages because they are

more likely to be actively maintained by developers and have reasonable test suites.
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recording the actual computed values in each assertion using Test

Runner’s instrumentation. If any assertion’s actual values remain

exactly the same for all those initial runs, we discard those tests

from consideration. For the remaining tests with assertions whose

actual values vary, we run those tests 500 times while recording test

results (success/failure) from each run. If we detect any failures (and

at least some passing runs as well), we mark the test as flaky and use

it for our evaluation. Ultimately, we are left with 21 projects with 35

flaky tests as part of our evaluation. Recall, FLEX assumes that the

underlying distribution is continuous. We also included 7 tests with

discrete distributions, mainly resembling binomial distribution (that

can be often approximated well with a continuous distribution).

6.2 FLEX Configuration
For our evaluation, we configure FLEX to first collect an initial

100 samples (INITIAL_SAMPLE_SIZE from Algorithm 1). If more

samples are needed, we configure FLEX to collect more samples

in batches of 50 (NEXT_SAMPLE_SIZE in Algorithm 1). We specify

FLEX to collect at most 3000 samples before stopping (MAX_SAMPLES
in Algorithm 1).

We set the minimum number of tail samples when testing for

convergence to be 50 (MIN_TAIL_SAMPLES in Algorithm 2). We use

SIGNIFICANCE_LEVEL of 0.05 for the GPD tests. For the confidence

level (C in Algorithm 1), we configure FLEX to use 90th, 95th,

99th, 99.9th and 99.99th percentiles.

We run all experiments on Azure VMs (Standard_F32s_v2 con-

figuration) with 3.4GHz Xeon processor with 32 cores and 64GB

memory. While executing the tests, we run 20 threads in parallel

as to speed up experiments.

6.3 Reporting to Developers
For each fixwe obtain from running FLEX on a flaky test, we prepare

a pull request to send to the developers. In the process of preparing

the pull request, we manually inspect the proposed fix(es) and the

surrounding context in the test as to determine if the fix seems

reasonable. For example, if the assertion initially checks if some

count of values is greater than zero, and the fix is to change that

assertion bound to instead be a negative number, then the fix does

not make sense in the context of this test. We select one of the other

available fixes in such a case (Section 5) based on the context.

For each project in our evaluation, we first send a pull request

for fixing one test. We initially send just one pull request as to not

bother developers immediately with many pull requests if they are

not willing to consider such changes. If the developers accept the

initial pull request, we send pull requests for fixing the remaining

flaky tests. We ensure every pull request we send only addresses

one flaky test at a time. As part of a pull request, we provide both the

proposed fix and the statistical evidence we gathered by running

FLEX on the test. We present to developers information on the

number of times the assertion failed out of how many reruns, and

we explain how the tail distribution was computed using the actual

values from test executions. We suggest the bounds at either 99.9th

or 99.99th percentile (depending on the test), but for completeness

we also provide the values for the other percentiles (including also

90th, 95th, and 99th percentiles). If the developer chooses one of

these bounds, we adjust the pull request accordingly.

7 EVALUATION
In this section, we address the following research questions:

RQ1: How many flaky tests can FLEX fix? Which fix strategy does

it apply in each case? How many test runs does it need in

each case?

RQ2: How do the different fix strategies compare and in what

scenarios can each be applied?

RQ3: How do developers respond to the fixes?

7.1 Flaky Tests Fixed by FLEX
We run FLEX on the 35 flaky tests found in the latest versions of

21 projects from Section 6.1. Table 2 presents the results. Each row

represents one flaky test. Column ID is a shorthand identifier we

give to each test for later reference, Project presents the name of

the project as a GitHub SLUG, Test presents the name of the test,

SHA presents the commit SHA of the project that we ran FLEX on,

#Samples presents the number of samples FLEX collected for its

analysis, Conv. presents whether the tail distribution converged

(Algorithm 1), (✓means yes, ✗means no), and L/E presents whether

the distribution had a light or exponential tail, when it converges

(✓ means yes, ✗ means no, - means not applicable).

For the final four columns under Fixed, we mark with✓ the type

of fix that FLEX proposed for the test. The column SB means the

test was fixed using a statistical bound estimated using the light or

exponential tail distribution computed using POT.EBmeans the em-

pirical bound strategy is used.RRmeans re-run strategy is used. By

default, FLEX prioritizes the fixes SB>EB>RR (Section 5), but adjusts

the recommendations based on the context of the test (Section 6.3).

NF means that flaky test was not fixed, because FLEX’s proposed

new assertion bound is tighter than the original (Section 5.4). As

such, these tests would be considered tolerant enough already, so

FLEX’s proposed assertion bound fix would not make sense. In sum,

FLEX proposes a fix for 28 flaky tests (SB, EB, RR), while 7 remain

not fixed (NF). We compare the fix strategies in Section 7.2.

Overall, for 17 tests, FLEX requires only 100 samples (the mini-

mum that we collect) for convergence, showing that our analysis is

efficient in most cases. Only for 2 tests does FLEX require more than

1000 samples for convergence. We apply the GPD test to check if we

have enough samples to reliably estimate the tail distribution. This

gives us statistical confidence in our results. Further, by considering

different thresholds for selecting the tail values, we ensure that we

can select as many samples from the tail of the distribution for the

best possible result. For the remaining 7 tests, which FLEX chooses

not to fix, the proposed bound was tighter than original bound. The

Box-Cox transformation helped in early convergence and bound

estimation for 8 cases: T1, T5, T14, T17, T21, T22, T32, and T34.

7.2 Comparison of Fix Strategies
Out of 28 fixed tests, FLEX proposes the statistical bound for 17

tests, empirical bound for 2 tests, and the re-running strategy for

9 tests. In cases where FLEX suggests multiple fixes, we manually

inspect and select the most appropriate fix based on the context.

We next discuss in which scenarios each fix might work.

We observe that FLEX’s statistical tail analysis converges for 31

tests, out of which we obtain a light or exponential tail for 30 tests
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Table 2: Results of running FLEX on 35 flaky tests

ID GitHub Project Test SHA #Samples Conv. L/E
Fix Type

SB EB RR NF

T1 microsoft/coax test_update 37c3e6 100 ✓ ✓ ✓ - - -

T2 deepchem/deepchem test_in_silico_mutagenesis_nonzero 6a535b 3000 ✗ – - - ✓ -

T3 deepchem/deepchem test_uncertainty 6a535b 100 ✓ ✓ ✓ - - -

T4 deepchem/deepchem test_restore_equivalency 6a535b 3000 ✗ – - - ✓ -

T5 deepchem/deepchem test_int_sequence 6a535b 450 ✓ ✓ ✓ - - -

T6 fastnlp/fastNLP test_ConstantTokenNumSampler 22c6e6 150 ✓ ✓ ✓ - - -

T7 rlworkgroup/garage test_update_envs_env_update 1f1742 150 ✓ ✓ - - ✓ -

T8 RaRe-Technologies/gensim test_cbow_hs_training_fromfile cfc9e9 250 ✓ ✓ - - ✓ -

T9 RaRe-Technologies/gensim test_cbow_neg_training_fromfile cfc9e9 650 ✓ ✓ - - ✓ -

T10 RaRe-Technologies/gensim test_sg_hs_training_fromfile cfc9e9 400 ✓ ✓ - - ✓ -

T11 RaRe-Technologies/gensim test_sg_neg_training_fromfile cfc9e9 650 ✓ ✓ - - ✓ -

T12 microsoft/hummingbird test_tree_regressors_multioutput_regression 9f71c2 3000 ✗ – - ✓ - -

T13 microsoft/hummingbird test_sklearn_multioutput_regressor 9f71c2 200 ✓ ✓ ✓ - - -

T14 microsoft/hummingbird test_sklearn_regressor_chain 9f71c2 1050 ✓ ✓ ✓ - - -

T15 kornia/kornia test_two_view cf8e85 100 ✓ ✓ - - - ✓
T16 magenta/magenta testStartCapture_Callback_Period b4b9af 100 ✓ ✓ - - - ✓
T17 magenta/magenta testWaitForEvent_Signal b4b9af 400 ✓ ✓ - - - ✓
T18 plasticityai/magnitude test_augmented_lstm_computes_same_function_as_pytorch_lstm 7ac0ba 3000 ✓ ✗ - ✓ - -

T19 plasticityai/magnitude test_scalar_mix_layer_norm 7ac0ba 100 ✓ ✓ ✓ - - -

T20 plasticityai/magnitude test_multi_head_self_attention_respects_masking 7ac0ba 100 ✓ ✓ ✓ - - -

T21 IntelLabs/nlp-architect test_tcn_adding 728e21 100 ✓ ✓ ✓ - - -

T22 facebookresearch/parlai test_stochastic fb5c92 100 ✓ ✓ ✓ - - -

T23 pgmpy/pgmpy test_fit 413c61 100 ✓ ✓ ✓ - - -

T24 pymc-learn/pymc-learn test_advi_fit_returns_correct_model 4f1ee6 100 ✓ ✓ - - - ✓
T25 pymc-learn/pymc-learn test_advi_fit_returns_correct_model 4f1ee6 3000 ✗ – - - ✓ -

T26 ICB-DCM/pyPESTO test_ground_truth_separated_modes a34608 100 ✓ ✓ ✓ - - -

T27 tristandeleu/pytorch-meta test_matching_log_probas 389e35 200 ✓ ✓ - - ✓ -

T28 refnx/refnx test_all_minimisers 34e369 100 ✓ ✓ ✓ - - -

T29 stellargraph/stellargraph test_poincare_ball_distance_self 1e6120 150 ✓ ✓ ✓ - - -

T30 WillianFuks/tfcausalimpact test_default_model_sparse_linear_regression_arma_data 9fc9e8 100 ✓ ✓ - - - ✓
T31 google/trax test_value_error_high_without_syncs beaca3 100 ✓ ✓ - - - ✓
T32 lmcinnes/umap test_aligned_update 05840e 100 ✓ ✓ ✓ - - -

T33 lmcinnes/umap test_neighbor_local_neighbor_accuracy 05840e 100 ✓ ✓ - - - ✓
T34 zfit/zfit test_onedim_sampling a798f9 100 ✓ ✓ ✓ - - -

T35 zfit/zfit test_sampling a798f9 100 ✓ ✓ ✓ - - -

Σ 21 35 614.29 31 30 17 2 9 7

and a heavy tail for one test. For 4 tests where the analysis does

not converge, even applying the Box-Cox transformation does not

aid the analysis. These scenarios occur either because either there

are very few samples in the tail region or the samples only consist

of very few discrete values.

In some cases, the variable in the assertion of a test might have a

known hard bound such as count or length that are lower bounded

by zero (e.g., assert (np.count_nonzero(scores) > 0) from

deepchem/deepchem). This assertion sometimes fails when the count

is zero. Hence, this case also does not satisfy FLEX’s requirement of

the samples belonging to a continuous distribution. However, this

information is not easily interpretable just from the samples that

FLEX’s tail analysis collects. In such cases, FLEX may sometimes

propose a negative assertion bound (using the inferred tail distribu-

tion), which is an impractical fix. Further, updating the assertion to

check for ≥ 0 also does not make sense. In these cases, re-running

the test is the only reasonable fix that FLEX can propose.

We propose the empirical bound fix strategy when we have a

large set of samples and can estimate a bound with high confi-

dence (i.e., small confidence interval). This strategy is useful in

scenarios where the tail analysis fails to converge, and the quantity

of interest does not have a known hard bound (like the previous

example). For instance, in the microsoft/hummingbird project, the

test test_tree_regressors_multioutput_regression contains
a flaky assertion:

assert_allclose(model.predict(X), torch_model.predict(X),

rtol=1e-05, atol=1e-05)

FLEX tracks the maximum absolute difference between the values

being compared and obtains a empirical bound of 3.27 ± 0.96. This

bound is evidently much higher than the absolute tolerance speci-

fied in the test (10
−5
). FLEX suggested a fix using this bound to the

developers. In this case, however, developers found an actual bug

in their code which was causing such erroneous executions.

7.3 Developer Response to FLEX’s Fixes
Using our methodology for sending pull requests to developers

(Section 6.3), we ultimately sent 19 pull requests for tests for which

FLEX proposes a fix. Table 3 presents the status of our pull requests

per project, representing the 28 tests that FLEX can fix. Column A
means number of pull requests accepted, Pmeans number pending,

R means number rejected, and U means number unsubmitted (we

are waiting initial response from the developer on our first sent pull

request). For pymc-learn/pymc-learn, we do not send a pull request

since the project has been inactive for the last two years. The total

number of pull requests (under column PRs) matches the number

of tests for which we sent fixes.
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Table 3: Pull Requests

Project Tests PRs A P R U

coax-dev/coax[11] 1 1 1 0 0 0

deepchem/deepchem[15] 4 1 0 1 0 3

fastnlp/fastNLP[24] 1 1 1 0 0 0

rlworkgroup/garage[28] 1 1 1 0 0 0

RaRe-Technologies/gensim[29] 4 1 0 0 1 3

microsoft/hummingbird[39–41] 3 3 1 0 2 0

plasticityai/magnitude[50] 3 1 0 1 0 2

IntelLabs/nlp-architect[55] 1 1 0 0 1 0

facebookresearch/parlai[60] 1 1 1 0 0 0

pgmpy/pgmpy[62] 1 1 1 0 0 0

ICB-DCM/pyPESTO[66] 1 1 1 0 0 0

pymc-learn/pymc-learn 1 0 0 0 0 1

tristandeleu/pytorch-meta[69] 1 1 0 1 0 0

refnx/refnx[70] 1 1 0 0 1 0

stellargraph/stellargraph[75] 1 1 0 1 0 0

lmcinnes/umap[78] 1 1 1 0 0 0

zfit/zfit[82, 83] 2 2 1 0 1 0

Σ21 28 19 9 4 6 9

So far, developers accepted 9 pull requests. 4 pull requests are

still pending developer response, and 6 pull requests are rejected.

For most of our pull requests, we selected the estimate based on

the 99.99th percentile as the new bound of the test. In some cases

we use a different percentile after discussion with developers, and

we provide the estimates for the other percentiles (Section 6.3).

Listing 5 shows an example of a fix for a test in zfit/zfit. For this
test, FLEX estimates the extreme percentiles as follows: 90th: 10

−5
,

95th: 10
−6
, 99th: 10

−7, and 99.99th: 10
−8
. The original bound is

10
−6

(shown in red). Initially, we submitted the pull request with

the 99.99th percentile as the fix (shown in blue). However, the

developers suggested they would prefer the 99th percentile (shown

in green) to reduce the flakiness to some extent (compared to the

current rate) for now and would later like to investigate into why

the computed values are so low.

- assert scipy.stats.ks_2samp(x, xns).pvalue > 1e-6

+ assert scipy.stats.ks_2samp(x, xns).pvalue > 1e-8

+ assert scipy.stats.ks_2samp(x, xns).pvalue > 1e-7

Listing 5: Fix for test in zfit/zfit

Of the 6 rejected pull requests, the developers accepted differ-

ent fixes for the tests. For two of our pull requests to microsoft-
/hummingbird [40, 41], the developers reasoned that our proposed

bounds were too large and hence indicative of a real bug in their

library. Later on, they proposed a global change for fixing several

numerical precision issues in their code, which impacted such tests.

For refnx/refnx [70], the developer preferred setting the seed in-

stead of changing bounds. For RaRe-Technologies/gensim [29], after

discussing with the developers, we found that the failures were due

to a race condition in the code, and we proposed a different fix that

they accepted [30]. Out of remaining two cases, in one case, for

IntelLabs/nlp-architect [55], the developers rejected our pull request
without providing any reason. For zfit/zfit [83], the test was already
marked flaky and the developers chose not to make any changes.

The positive responses from developers confirm that tuning as-

sertion bounds is a reasonable way to fix flaky tests in these ML

projects that deal with randomness (e.g., consider the comments

mentioned in Section 2). The developers from microsoft/humming-
bird, while accepting one of our initial pull requests, also confirmed

that they rely on their intuition to manually set such bounds: “...For
the moment we manually set a ‘reasonable’ value for the differences,
but having a more ‘scientific’ way of finding them will be great!”. The
developers of lmcinnes/umap accepted our pull request and com-

mented “Thanks – the non-deterministic tests are a little annoying
at times. I appreciate the effort you went to to ensure this won’t trip
accidentally”. These positive responses show a practical value of

FLEX’s systematic approach for determining assertion bounds.

8 THREATS TO VALIDITY
The projects we use in our evaluation are only a subset of all ma-

chine learning applications. We selected these projects by starting

with the most popular machine learning libraries and finding their

dependent projects. We believe these projects are representative.

We also focus on flaky tests that use approximate assertions, found

to be a common type of flaky test from prior work [19]. We detect

the flaky tests in these projects through repeated reruns. We use a

similar rerun strategy to detect these flaky tests as prior work [19].

The flaky tests we use are then a lower-bound on the total number of

flaky tests, as other flaky tests may require even more reruns to ob-

serve some failures. Such tests have a higher chance of flakiness and

hence are likely the ones that developers would want to focus on.

Since FLEX builds on several statistical methods and heuristics,

there is a possibility of estimating incorrect bounds. As a result

we may sometimes over-estimate the bound which may cause the

tests to miss some bugs. We minimize this risk by using high sig-

nificance levels both for individual hypothesis tests and for the

algorithm for threshold selection. To increase confidence in the

the bug finding ability of the fixed test one can use strategies

from the literature, e.g. [18]. Like other prior work on repairing

tests [12, 13, 47, 52, 81], we assume code under test to be correct,

with the implementation matching the intended logic. Ultimately,

we send the proposed fixes as pull requests to developers, providing

them the statistical evidence of the fixes. We allow the developers,

who are more knowledgeable about the code than us, to use the

provided evidence to make the final judgment call on how good

the proposed fix is.

9 RELATEDWORK
Flaky Tests. Luo et al. [49] performed the first empirical study on

flaky tests, studying open-source projects and determining com-

mon root causes for flaky tests. Later work would build upon Luo

et al.’s findings, developing techniques to detect specific flaky tests

with root causes found from their study, such as due to test-order

dependencies [27, 46], asynchronous waits [44], or unordered col-

lections [73]. However, these prior works focused on flaky tests in

traditional software.

Dutta et al. [17] performed an empirical study to find com-

mon root causes for flaky tests in ML applications. They found

that a common cause for flakiness in this domain is algorithmic

randomness (e.g., calls to random number generators), both in

the application code and the tests. Leveraging these insights, they

developed FLASH [17] to detect such flaky tests using convergence

testing. Our work shows how to fix such flaky tests using EVT and

statistical hypothesis tests to update approximate assertion bounds.
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Flaky Test Repair. Prior work on test repair generally involves up-
dating assertions after code under test has evolved [12, 13, 47, 52, 81].

The assumption is that the code under test is correct and so test

assertions need to match the current implementation. We also make

this assumption in our work and propose a technique for adjust-

ing assertions that better match the underlying implementation

while reducing flakiness. Recently, there has been work on repair-

ing specific types of flaky tests, such as flaky tests due to test-order

dependencies [74] or due to unordered collections [84]. The goal of

these techniques is to make flaky tests no longer fail due to their

flakiness root cause. Lam et al. [45] proposed mitigating flakiness

due to asynchronous waits by automatically adjusting wait times

as to reduce the chance of tests failing due to waits. We also focus

on fixing flaky tests by adjusting assertion bounds, reducing the

chance of a flaky test (though not completely eliminating it). We

focus on flaky tests with approximate assertions that can fail due

to inherent randomness in executing code under test.

TERA [18] aims to reduce the time of testing ML projects by

changing the algorithm hyper-parameters, which potentially in-
creases the flakiness of tests. TERA is based on Bayesian optimiza-

tion guided by convergence testing. FLEX instead changes the asser-

tion bounds to reduce flakiness (while not impacting execution time)

by leveraging distribution estimation from extreme value theory.

Extreme Value Theory (EVT). We rely on EVT [14, 26, 64] to

determine tail distributions of the computed values in approximate

assertions. While we rely on the Peak Over Threshold (POT) [64]

method to apply EVT, there are other popular methods as well.

Block Maxima Method (BMM) [14] uses a given block size B (se-

lected by user) to split the given samples into equally sized blocks

and then considers the maximum value in each block. According to

the Fisher-Tippet theorem [26], this distribution is then guaranteed

to converge to a Generalized Extreme Value distribution. The choice

of block size B is often not intuitive and can affect the convergence

of the distribution. This method is generally better suited for data

with some periodicity, e.g., daily/month weather data/finance data.

In our case, the values in the assertions do not exhibit any such

periodicity in general, which makes this method less effective. The

POT method, on the other hand, considers exceedances over some

threshold T (selected by the user). These exceedance values from

the samples then converge to a Generalized Pareto Distribution

(GPD) [64]. This method is better suited to our use case.

Testing of Programs in Presence of Randomness. Machine

learning frameworks like TensorFlow [76] and PyTorch [61] have

led to a surge in machine learning based applications. Probabilistic

programming has also been gaining in popularity in recent years,

leading to the development of numerous probabilistic programming

languages [9, 32, 67]. Researchers proposed techniques for testing

and debugging probabilistic systems [17, 20, 48], machine learning

frameworks [21, 35, 37, 63, 85], and randomized algorithms [42] to

complement manual test writing. Researchers have also explored

techniques for testing randomized or adaptive software [2, 3, 51, 72]

or analyzing robustness of programs [38, 56, 79, 80]. However, the

advances in efficient automated test generation for these systems

has yet to catch up with the speed of application development while

capturing the inherent non-determinism and overcoming the lack

of reliable oracles in this domain.

10 CONCLUSION
We present FLEX, the first tool for automatically fixing tests from

machine learning (ML) projects that are flaky due to algorithmic ran-

domness. FLEX analyzes and transforms tests that use approximate

assertions to compare actual and expected values that represent

the quality of ML results. We leverage statistical methods from Ex-

treme Value Theory to determine the appropriate assertion bounds

as to reduce the chance of flaky test failures. We evaluate FLEX

on a corpus of 35 tests collected from the latest versions of 21 ML

projects. Overall, FLEX identifies and proposes a fix for 28 tests. We

sent 19 pull requests, each fixing one test, to the developers. So far,

9 have been accepted by developers. We envision that many future

applications will continue to incorporate a degree of randomness.

Our goal is to help developers cope with randomness and overcome

the lack of reliable testing oracles both in ML and other domains.
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