
InspectJS: Leveraging Code Similarity and User-Feedback for
Effective Taint Specification Inference for JavaScript

Saikat Dutta
UIUC

Urbana, USA
saikatd2@illinois.edu

Diego Garbervetsky
DC/UBA. ICC/CONICET
Buenos Aires, Argentina

diegog@dc.uba.ar

Shuvendu K. Lahiri
Microsoft Research

Seattle, USA
shuvendu.lahiri@microsoft.com

Max Schäfer
GitHub

Oxford, UK
max-schaefer@github.com

ABSTRACT
Static analysis has established itself as a weapon of choice for de-
tecting security vulnerabilities. Taint analysis in particular is a very
general and powerful technique, where security policies are ex-
pressed in terms of forbidden flows, either from untrusted input
sources to sensitive sinks (in integrity policies) or from sensitive
sources to untrusted sinks (in confidentiality policies). The appeal
of this approach is that the taint-tracking mechanism has to be im-
plemented only once, and can then be parameterized with different
taint specifications (that is, sets of sources and sinks, as well as any
sanitizers that render otherwise problematic flows innocuous) to
detect many different kinds of vulnerabilities.

But while techniques for implementing scalable inter-procedural
static taint tracking are fairly well established, crafting taint speci-
fications is still more of an art than a science, and in practice tends
to involve a lot of manual effort.

Past work has focussed on automated techniques for inferring
taint specifications for libraries either from their implementation or
from the way they tend to be used in client code. Among the latter,
machine learning-based approaches have shown great promise.

In this work we present our experience combining an exist-
ing machine-learning approach to mining sink specifications for
JavaScript libraries with manual taint modelling in the context of
GitHub’s CodeQL analysis framework. We show that the machine-
learning component can successfully infer many new taint sinks
that either are not part of the manual modelling or are not detected
due to analysis incompleteness. Moreover, we present techniques
for organizing sink predictions using automated ranking and code-
similarity metrics that allow an analysis engineer to efficiently sift
through large numbers of predictions to identify true positives.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513048

KEYWORDS
Taint Analysis, Machine Learning, JavaScript

ACM Reference Format:
Saikat Dutta, Diego Garbervetsky, Shuvendu K. Lahiri, and Max Schäfer.
2022. InspectJS: Leveraging Code Similarity and User-Feedback for Effective
Taint Specification Inference for JavaScript. In 44nd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’22),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3510457.3513048

1 INTRODUCTION
It is a truth universally acknowledged, that a static analyzer in
possession of an inter-procedural taint analysis must be in want of
taint specifications. Even the most scalable taint analysis cannot, in
general, cope with the vast amount of third-party library code that
even very simple modern software depends on, quite apart from the
fact that this code may be written in an entirely different language
(as is the case for native library bindings in scripting languages) or
may not even be available at all (for binary dependencies).

Taint specifications distill out the analysis-relevant information
for such libraries in a compact and reusable form. Specifically, a
taint analysis is usually interested in source specifications, indicating
library APIs that may return untrusted (“tainted”) data possibly con-
trolled by a malicious attacker, and sink specifications, identifying
APIs into which such tainted data must not flow without appropri-
ate sanitization, which is in turn captured by sanitizer specifications.
Other potentially interesting specifications include propagation
specifications modelling whether a function propagates taint from
its arguments to its return value (a dual to sanitizer specifications),
aliasing specification modeling any aliasing relationships intro-
duced by the function, and others. In practice, these specifications
are often manually crafted by analysis engineers based on API doc-
umentation. This allows maximum flexibility and precision, but
is labor-intensive and error-prone, often leading to incomplete or
imprecise models, which in turn cause missing or false alerts.

Many different techniques have been proposed in the literature
to instead generate taint specifications automatically, either from
the source code of the library or from examples of its usage. The
former typically involves some sort of summarization analysis be-
ing done on the library source code. Our approach is based on
Seldon [4], a representative of the latter category, which works
by mining a (large) corpus of client code for a library, and then

https://doi.org/10.1145/3510457.3513048
https://doi.org/10.1145/3510457.3513048

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Saikat Dutta, Diego Garbervetsky, Shuvendu K. Lahiri, and Max Schäfer

1 sliderController.SaveSlider = async (req , res , nxt) => {

2 try {

3 const slider = req.body➀;

4 let id = slugify(slider.slider_key);

5 await sliders.findByIdAndUpdate ({ id: id➂ },

6 {

7 $set: slider ,

8 });

9 ...

10 } catch (err) {

11 nxt(err); }

12 };

13 function slugify(text) {

14 return text.toLowerCase ().replace (/\s+/g, '-')➁;

15 }

1 loginlogController.logout = async (req , res , nxt) => {

2 try {

3 let token = req.body.token➃;

4 token = token.replace('Bearer ', '')➄;

5 await loginlogs.findOneAndUpdate ({ token: token➅ },

6 {

7 $set: { is_active: false , logout_date: Date.now() }

8 });

9 console.log(token➆);

10 ...

11 } catch (err) {

12 nxt(err); }

13 };

(a) (b)
Figure 1: Two uses of APIs relevant to NoSQL injection vulnerabilities: (a) findByIdAndUpdate, and (b) findOneAndUpdate. Circled
numbers indicate expressions referenced in the text.

uses probabilistic inference to identify candidate taint specifications
from the way clients use the library. The inference attaches to each
candidate a score between zero and one which intuitively indicates
how confident we are that the prediction is correct. As a final step,
the concrete candidates identified on the training set need to be
abstracted into a code-base independent representation that can be
used to find candidate taint specifications on other code bases.

In this work, we add to this process a refinement step where
the score of a candidate is adjusted using code-similarity metrics,
giving greater weight to candidates that appear in a context that
is syntactically similar to known taint specifications for which we
already possess a manually-written model.

Unlike Seldon, we do not aim to obviate manual models but to
improve them. To make this feasible, we need a way of presenting
predicted taint specifications to an analysis engineer that makes
them easy to triage and efficiently prune away false positives.

We propose three criteria for organizing predictions: by score as
determined by the probabilistic inference and refined using code
similarity; by generality; and by syntactic similarity. The first one is
quite obvious: predictions with a low score are not worth showing
to the engineer. For the second one, the idea is that overly general
representations that lead to a large number of predicted sinks are
unlikely to be true positives. The third one again uses code similar-
ity, this time to allow the engineer to dismiss a false positive along
with all other predictions that are syntactically similar to it.

We have implemented our approach in a tool called InspectJS,
which is based on the CodeQL analysis framework [7], and can
be used to infer sink specifications for JavaScript. In CodeQL, sink
specifications tend to be analysis-specific and so require greater
manual modeling effort than source specifications, which are often
reused across multiple analyses; hence we focus on the former here.
Sanitizer specifications are not as interesting in CodeQL, since its
taint analysis by default does not track taint through unknown
functions, which hence act as sanitizers by default. We choose to
focus on JavaScript due to its ubiquitous use in software with a
large attack surface, both on the server and client side.

We motivate our work using a concrete example in Section 2,
discuss its relationship with Seldon in Sections 3 and 4, and em-
pirically evaluate the quality of the sink predictions produced by
InspectJS in Section 5 before surveying related work in Section 6
and concluding in Section 7.

In summary, the main contributions of our work are:

• Anovel combination of a probabilistic approach to predicting
taint-sink specifications from static data-flow information
with code-similarity based refinement to adjust prediction
score based on their similarity to known sinks.

• Three techniques for organizing sink predictions based on
their score, generality, and similarity to each other, allow-
ing a domain expert to efficiently triage large numbers of
automatically generated predictions.

• An implementation of our technique on top of the CodeQL
static analysis framework in a tool called InspectJS.

• An empirical evaluation of the quality of the predictions
produced by InspectJS on real-world code bases, showing
that it correctly identifies taint sinks that are missing from
the manually-written models shipping with CodeQL, some
of which have since been incorporated into the models.

2 MOTIVATING EXAMPLE
To motivate our work, we will show an example of a missing taint
specification in the CodeQL static analysis for JavaScript, which
was identified with the help of InspectJS and has since been added
to the manually-written model.1

Consider the code snippet in Figure 1(a), which is adapted (and
slightly simplified) from the WaftEngine project.2 It shows a route
handler from an HTTP server implemented as a JavaScript function
accepting three parameters req, res, and nxt. Parameter req is the
HTTP request object originating from a client, res is the response
object to be filled in by the handler, and nxt is the next handler to
be called in case of error.

The route handler extracts the slider_key field from the re-
quest body (Line 3), passes it to the slugify function (defined in
Lines 13-15) which lower-cases it and replaces all spaces with hy-
phens (Line 4), and then uses the resulting string to look up and
update an entry in a NoSQL database using the findByIdAndUp-
date method (Lines 5-8). The first argument to this method is a
JavaScript object, which is interpreted as a NoSQL query. For exam-
ple, the query { id: "myslider" } selects all entries with the id
field equal to "myslider". This query is really a short-hand for the
query { id: { $eq: "myslider" } }, using the NoSQL operator
$eq to compare the field id with the value "myslider".

1https://github.com/github/codeql/pull/4753
2https://github.com/WaftTech/WaftEngine

https://github.com/github/codeql/pull/4753
https://github.com/WaftTech/WaftEngine

InspectJS: Leveraging Code Similarity and User-Feedback for Effective Taint Specification Inference for JavaScript ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Other operators allow more complicated tests, for example $ne
for inequality, $regex for regular expression matching, and $where
for specifying an arbitrary JavaScript expression. It is because of
these more advanced operators that it is not, in general, safe to
pass data controlled by an untrusted user to a NoSQL API method
expecting a query, since the user might specify a query using $ne
or $regex to access almost any entry, or a query using $where to
execute arbitrary JavaScript code.3

In this example, while req.slider_key is under user control,
it is used in a reasonably safe manner: as revealed by its use in
the slugify function, slider_key is a string, so it cannot be used
to encode potentially problematic conditions. CodeQL recognizes
this and does not flag this snippet as problematic: while its models
allow it to classify req.body and its properties as taint sources and
the first argument to findByIdAndUpdate as a taint sink, it also
knows that replace (Line 14) acts as a sanitizer in this case since
its result is guaranteed to be a string.

Now consider the code snippet in Figure 1(b), showing a different
handler function in the same project. Its structure is very similar:
a property of req.body is read (Line 3), processed with replace
(Line 4), and then used in a NoSQL query (Lines 5-8), this time with
the findOneAndUpdate method. Prior to our work CodeQL did not
recognize this method as a sink, and hence would have failed to
flag not just this safe use, but also unsafe uses.

This is not an uncommon problem: manually modelling large
APIs, like the Mongoose framework4 being used here, is tedious
and error-prone often leading to missing taint sources or sinks.
Automated taint-specification mining promises to eliminate or at
least alleviate this problem.

Many different approaches have been proposed in the literature
for automatically discovering taint-specifications. Our work builds
on the flow triple approach introduced by Merlin [10] as refined by
Seldon [4]. At a high level, this involves three steps.

First, we mine a training set of code bases for triples of program
elements ⟨src, san, snk⟩ where taint may propagate from src to snk
via san, and src is of a syntactic structure that means it could po-
tentially be a taint source (e.g., the result of a function call or a
parameter to a callback), san could be a sanitizer (i.e., a function
call), and snk could be a taint sink (e.g., a function argument). Note
that this is done based on purely syntactic criteria, independent of
any semantic modelling.

For the snippets in Figure 1, for example, we would obtain the
triples ⟨➀,➁,➂⟩ and ⟨➃,➄,➅⟩ representing the flow from the re-
quest objects through the sanitizing string replacements into the
NoSQL queries.

Second, we perform a probabilistic analysis of these triples based
on the following observation: if src is known to be a taint source
and san a sanitizer, then it is very likely that among all the nodes
snk𝑖 for which we have observed a flow triple ⟨src, san, snk𝑖 ⟩, at
least one is a taint sink, since otherwise there presumably will not
be any need for sanitization. Similarly, from known sources and
sinks we can infer the presence of a sanitizer, and from known
sanitizers and sinks a source.

3In practice, the code will usually be executed in a sandbox curtailing access to sensitive
resources, but a malicious user could still specify a non-terminating condition to mount
a denial-of-service attack.
4https://mongoosejs.com/

For example, for the triple ⟨➃,➄,➅⟩ mined from Figure 1(b), we
already know that ➃ is a source and ➄ is a sanitizer, suggesting
that ➅ may be a sink, as is indeed the case.

These newly inferred elements can then be plugged into the
triples in turn, allowing us to discover even more sources, sinks,
and sanitizers. As discussed in more detail below, Seldon associates
a score between 0 and 1 with each such prediction which represents
the degree of confidence in the correctness of the prediction.

In the third step, we can suitably abstract the concrete elements
observed on the training set into a code-base independent repre-
sentation, discard predictions with low scores, and then use them
to improve (“boost”) a taint analysis, allowing it to flag more alerts
on any code base, not just the ones in the training set.

Alternatively (and this is the use case we are most interested in)
the results of the inference step can be presented to an analysis
engineer for further triaging, allowing them to identify lacunae in
the hand-written models and improve the analysis accordingly.

One weakness of such purely probabilistic approaches is that
they have little built-in knowledge of the semantics of the code
being analyzed apart from information about known taint specifi-
cations, which can sometimes lead to surprising mispredictions.

For example, the call to console.log in Figure 1(b) is not a
sink, but based on purely syntactic criteria it looks like a plausible
candidate, and so we would add the ⟨➃,➄,➆⟩ to our set of mined
flow triples. If there are sufficiently many similar usages, we might
then end up wrongly predicting that console.log is a sink.

To prevent this, our approach combines the probabilistic analysis
with a post-processing step based on code similarity, whereby the
scores of sink predictions are adjusted based on their similarity
to known sinks. In our example, the call to console.log does not
look similar to a sink, so its score would be decreased, while the
call to findOneAndUpdate is syntactically quite similar to the call
to findByIdAndUpdate, which we know to be a sink, causing its
score to be increased.

3 BACKGROUND: SELDON
Before we delve into the technical details of our approach, we give
a brief overview of Seldon [4], on which the core inference engine
in InspectJS is based.

Seldon is a semi-supervised approach for inferring likely taint
specifications (source, sanitizer, or sink) for unmodeled or partially
modeled library APIs from a large corpus of client code using these
APIs. Based on a set of client programs D with a (small) set of
program elements A𝑀 already annotated as sources, sanitizers, or
sinks, Seldon infers specifications for the remaining (larger) set
of un-annotated program elements A𝑈 . This involves four steps
described in more detail below: capturing information flow in the
form of a propagation graph; representing the nodes of that graph in
a code-base independent form; building a constraint system encod-
ing the taint-specification inference problem; and finally solving
that system.

While Seldon was originally implemented and evaluated for
Python, we adapt the approach for JavaScript as we describe in
Section 4.1.
Capturing information flow. For each input program, Seldon
builds a propagation graph 𝐺 = (𝑉 , 𝐸) where the edges 𝐸 capture

https://mongoosejs.com/

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Saikat Dutta, Diego Garbervetsky, Shuvendu K. Lahiri, and Max Schäfer

information flows between program elements 𝑉 (referred to as
“events” in the original Seldon paper, a usage which we will not
follow). Program elements represented in the propagation graph
include arguments to and return values of function calls, reads
and writes of object properties or global variables, and any other
construct that propagates information. Seldon uses standard points-
to analysis to build such graphs.
Representing program elements. By their very nature, program
elements are specific to a single code base, so in order to make sink
predictions reusable across programs we need to assign code-base
independent representations Rep(𝑣) to program elements 𝑣 ∈ 𝑉 .
Seldon uses a variant of qualified names for this purpose; for ex-
ample, the representation of the result of a function call could
be the fully qualified name of the function (most specific), or an
unqualified name (least specific). For example, the method find-
OneAndUpdate used in Figure 1(b) has the two representations mon-
goose.Model.findOneAndUpdate and findOneAndUpdate.
Building a constraint system. Seldon frames the problem of
inferring taint specifications as a linear optimization task which can
be solved using efficient solvers and makes their solution scalable.

For each program element 𝑣 in 𝑉 and each representation 𝑛 ∈
Rep(𝑣) of 𝑣 , Seldon instantiates three variables: 𝑛src, 𝑛san, and 𝑛snk,
each of which denotes the likelihood of 𝑣 being a source, sanitizer,
or sink. Seldon adds constraints for: (1) constraining each variable
to [0, 1] to enable interpreting them as probabilities, and (2) set-
ting appropriate variables to 1 or 0 for program elements whose
specifications are known (from A𝑀).

Seldon then adds various constraints to encode their intuitions
about information flow using the propagation graphs. Figure 2
presents a visualization of one such constraint. Figure 2a indicates
that if there is a flow from a sanitizer to a sink, then it is most likely
sanitizing the output from a source. Figure 2b shows a propagation
graph capturing such an occurrence. It indicates that if we have a
program element 𝑣san, classified as sanitizer, and another program
element 𝑣snk, classified as sink, and there is a flow from 𝑣san to
𝑣snk, then we must classify at least one of the program elements
𝑣𝑖 , 𝑖 ∈ [1, . . . , 𝑘] which flow into 𝑣san as a source. Figure 2c presents
the corresponding constraint that we add to encode this intuition.

(a) (b)

(𝑛san)san+(𝑛snk)snk ≤
𝑘∑︁
𝑖=1

(𝑛i)src+ 𝐶 + 𝜖

(c)

Figure 2: Intuition of Information Flow Constraints

Here, 𝑛san = Rep(𝑣san), 𝑛snk = Rep(𝑣snk), 𝑛i = Rep(𝑣i). 𝐶 is a
fixed constant. Since the programs in the dataset may not always
strictly respect the intuitions, Seldon also adds the 𝜖 variables (one
for each constraint) to allow for minor deviations from the assump-
tions. Seldon adds one such constraint for each (san, snk) pair which

has at least one source candidate flowing into the sanitizer. Seldon
also adds other constraints analogously for pairs of (src, snk) and
(src, san).
Solving the constraint system. Finally, Seldon solves the opti-
mization problem by minimizing the sum of all relaxation variables
(𝜖𝑖) and the sum of all variable scores: 𝑛t, for 𝑡 ∈ {src, san, snk}, sub-
ject to the specified constraints. Seldon then returns the confidence
scores for each representation being a source, sink, or sanitizer.
The inferred specifications (e.g., with some minimum confidence)
can then be used to boost a taint analyzer. The spec is given by a
list of triples (𝑛, 𝑘𝑖𝑛𝑑, 𝑠𝑐𝑜𝑟𝑒) where 𝑘𝑖𝑛𝑑 ∈ {𝑠𝑟𝑐, 𝑠𝑛𝑘, 𝑠𝑎𝑛} and 𝑛 is
a representation. Note that there can be many program elements
with the same representation.

4 OUR APPROACH
We now describe the key technical components of InspectJS. At
a high level, InspectJS takes as input a training set of JavaScript
code bases D𝑇 and a set of seed specifications A𝑀 that can be
used to identify known sinks S𝑀 , i.e., program elements in D𝑇
that are known to be sinks, for example, as the result of manual
modeling. InspectJS then processes the training set and infers a set
of predicted sinks, i.e., program elements in D𝑇 that are likely to be
sinks, but were previously unmodeled. Each of these is associated
with a score between zero and one indicating the likelihood that the
element is, in fact, a sink. As the final step of training, the predicted
sinks, which are concrete program elements in D𝑇 , are abstracted
into code-base independent representations, which together with
their associated scores form the predicted sink specifications A𝑃 , or
predictions for short.

For a given test set of JavaScript code basesD𝐸 , these predictions
can be instantiated to yield new predicted sinks on those code
bases. Since some of the sinks may be false positives, they are
not intended to be used directly, but to go through a two-step
refinement process: one automated and one based on feedback
from an analysis engineer. The final, reviewed set of sinks can then
be used to improve manually-written models, or directly to find
security vulnerabilities.

Figure 3 presents the overall architecture of InspectJS. These
tasks are carried out by a pipeline of four components: Seldon∗,
GetSinks, Similarity-Based Refiner, and Feedback-Based Refiner.

Seldon∗ implements our adaptation of Seldon’s approach for pre-
dicting likely sinks. It takes A𝑀 and D𝑇 as inputs and produces
the predicted sink specifications A𝑃 . In general, a sink specifica-
tion is a 3-tuple of the form ⟨rep, kind, 𝑝⟩, where rep is a program
element representation, kind ∈ {src, san, snk} denotes the role of
the program element, and 𝑝 ∈ [0, 1] is a confidence score indicating
the likelihood of the element assuming the given role. In A𝑀 , all

Figure 3: InspectJS: System Overview

InspectJS: Leveraging Code Similarity and User-Feedback for Effective Taint Specification Inference for JavaScript ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

representations are assigned a confidence score of 1 (highest) since
we already know their true roles.

GetSinks then instantiates the predicted sinks specifications A𝑃

on test projects D𝐸 to produce new sinks, S𝑃 , which are tuples
of the form ⟨𝑣, 𝑝⟩. Here, 𝑣 is a program element from one of the
test projects in D𝐸 and 𝑝 ∈ [0, 1] is the confidence score of the
representation of 𝑣 in A𝑃 .

The Similarity-Based Refiner takes the inferred sinks S𝑃 and a
set of precomputed embeddings of known sinks 𝐸𝐾 as inputs. It im-
plements a code-similarity based technique to adjust the confidence
scores of inferred sinks according to how similar they are to known
sinks, and returns the refined set of sinks S𝑅 , which contains the
same program elements as S𝑃 , but with adjusted scores, and the
embeddings for predicted sinks 𝐸𝑃 .

The role of the Feedback-Based Refiner is to validate these predic-
tions computed over the test projects D𝐸 , presenting the predicted
sinks along with their confidence scores to an analysis engineer to
provide feedback about false positives, which the Feedback-Based
Refiner eliminates, leaving a final set of refined sinks S𝐹 . This mod-
ule uses the embeddings of predicted sinks, 𝐸𝑃 provided by the
Similarity-Based Refiner to identify sinks that may be similar to a
false positive, allowing the engineer to efficiently eliminate groups
of similar false positives at once.

4.1 Seldon∗

Seldon∗ implements our Seldon-based approach for inferring likely
taint sinks by framing the problem as a linear optimization task.
The main differences with Seldon are in the way we compute the
candidate triples, the use of one canonical representation per event
instead of many candidates, and a more compositional approach
to dealing with multiple projects where we build one constraint
system per project and compose the optimization result. We now
explain each of these in detail.
Computing program elements and triples. Just like Seldon,
we start by extracting triples of the form (𝑣src, 𝑣san, 𝑣snk) from the
training projects D𝑇 , denoting information flow from 𝑣src to 𝑣san
and from there to 𝑣snk, where the three program elements are of the
appropriate syntactic structure to potentially act as source, sanitizer,
and sink, respectively, as explained in Section 3.

For capturing information flow between program elements, we
use the standard inter-procedural taint tracking framework of
CodeQL instead of the points-to analysis used by Seldon. The rea-
son behind this choice is that we found that building propagation
graphs for JavaScript using Seldon’s approach leads to both spuri-
ous and missing flows. We can also avail ourselves of the support
CodeQL provides for tracking flow through templating libraries
and frameworks like Angular and React, which is not adequately
captured by a simple Seldon-style points-to analysis.

For scalability reasons, we further restrict the set of sink can-
didates we build triples for by focussing on candidates from the
most popular libraries as determined by the number of usages in
JavaScript projects on LGTM.com.
Program element representations.We represent program ele-
ments using partial access paths [11], which are a generalization of
qualified names to the setting of JavaScript with its highly dynamic
object system and free use of higher-order functions. Access paths

are build from three basic operators: property access p.q, repre-
senting property q of the object represented by the base path p;
parameter access p(i), representing the parameter i of the function
represented by the base path p; and result access p(), representing
the return value of the function represented by the base path p.

For instance, the first argument of the invocation of findBy-
IdAndUpdate on line 5 of Figure 1(a) can be represented by the
following three access paths:

(1) findByIdAndUpdate(0), referring to it as the first argument
to a method called findByIdAndUpdate;

(2) getquerySendResponse(0).*(0), referring to it as the first
argument to some method (the name being left unspecified)
of an object that is passed as the first argument to getquery-
SendResponse;5

(3) getquerySendResponse(0).findByIdAndUpdate(0),
which is similar but makes the name of the method concrete.

Instead of Seldon’s approach of allowing a program element to
have multiple representations, we only select one canonical repre-
sentation per program element, which reduces the complexity of the
constraint system. For canonical representation we aim to find rep-
resentations that are general enough to be common across different
projects, but still specific enough to capture semantic differences.
We choose the canonical representation by extracting features of
the representation such as its length and the number of occurrences
of the different kinds of accesses, and then assigning a score based
on these features.

The weights for computing the score were determined semi-
automatically by computing representations of known sinks on a
large set of training projects and prioritizing common features. In
our example above, the first representation is chosen as canonical
because it provides enough information to obtain the program
element, but disregards other details in favor of generality.
Inferring new sink specifications using constraint solving.
Next, we construct a constraint system using the same approach as
Seldon and solve it using CBC [6]. However, while Seldon combines
the constraints extracted from propagation graphs of all programs
and builds a single optimization objective to feed into the solver, we
found this approach difficult to scale. Instead, we solve constraints
on a per-project basis, obtaining one set of sink prediction specifi-
cations per project. Then we average prediction scores across all
projects to obtain sink prediction specifications A𝑃 .

4.2 GetSinks
Once we get the sink prediction specifications A𝑃 we proceed to
predict concrete sinks by instantiating the specifications on the test
set D𝐸 . That is:

S𝑈 = {(𝑣, 𝑝) |𝑣 ∈ elements(D𝐸) ∧ (repr(𝑣), snk, 𝑝) ∈ A𝑃

∧(repr(𝑣), snk, _) ∉ A𝑀 }

Since our goal is to predict new sinks, we furthermore remove
known sinks that are already modelled by the CodeQL library from
this set. The GetSinks module implements both these steps using
CodeQL library.

5This access path arises from a piece of code that is not shown in Figure 1(a).

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Saikat Dutta, Diego Garbervetsky, Shuvendu K. Lahiri, and Max Schäfer

4.3 Similarity-Based Refiner
Like Seldon, Seldon∗ assigns confidence scores based on represen-
tation, so all program elements with the same canonical repre-
sentation are assigned the same score. However, sometimes rep-
resentations can be too coarse, representing both true sinks and
false positives. One way to minimize false positives is to use more
specific representations. However, this can lead to the opposite
problem, where real sinks are missed. Further, it also impacts scal-
ability since it increases the number of constraint variables. The
Similarity-Based Refiner tackles this problem by comparing the
syntactic context of predicted sinks with a corpus of known sinks
collected across many projects using code embeddings. Code em-
beddings are numerical vector representations of code components
such as tokens or functions [3]. By mapping discrete data (code snip-
pets) into a continuous vector space, code embeddings allow one
to easily measure semantic similarity between code components.

Our intuition behind using code similarity is that a sink candidate
which is used in a similar context as a known sink is more likely to
be true sink than one which is used in a different context. Hence,
we refine the predicted sinks by combining the confidence scores
computed by Seldon∗ and the code-similarity based scores.

Algorithm 1 describes our approach conceptually. It takes the
predicted sinks S𝑃 , and a set of embeddings of known sinks 𝐸𝐾
indexed by representations. These embeddings can be (but do not
have to be) computed on the same set of projects. The algorithm
then computes, for each prediction, the maximum similarity score
with a known sink that has the same canonical representation,
using cosine similarity of code embeddings as similarity metric as
detailed in Algorithm 2 below. This is done both for the enclosing
statement (𝑍stmt) and the enclosing function (𝑍func). The final score
of the sink is computed on Line 6 as a combination of the original
score and the two similarity-based scores.

In practice, we pre-compute the set of embeddings, 𝐸𝐾 , from a
set of known sinks for performance reasons. To obtain 𝐸𝐾 , we build
a training set comprising projects relevant to various queries (such
as NoSqlInjection, XSS, and TaintedPath) and extract known sinks
from them using CodeQL’s pre-defined models. Our intuition here
behind this approach is that the sinks that are currently unmodeled
for a query may be used in syntactic contexts similar to not only the
known sinks of that query but also to the ones in different queries
as well.

Algorithm 1 Refining predictions using Code Similarity
Input: Predicted sinks S𝑃 , Known Sink Embeddings 𝐸𝐾
Output: Refined sinks S𝑅

1: procedure SimilarityBasedRefiner(S𝑃 , 𝐸𝐾)
2: S𝑅 = ∅
3: 𝐸𝑃 = ∅
4: for (𝑠, 𝑝) ∈ S𝑃 do
5: 𝑍stmt, 𝑍func = ComputeSimilarityScore(𝑠, 𝐸𝐾)
6: S𝑅 = S𝑅 ∪ (𝑠, (𝑝 + (𝑍stmt + 𝑍func)/2)/2)
7: stmt𝑠 , func𝑠 = getEnclosingCode(𝑠)
8: 𝐸𝑃 (𝑠) = (Emb(stmt𝑠), Emb(func𝑠))
9: end for
10: return S𝑅 , 𝐸𝑃
11: end procedure

Computing similarity using code embeddings. Given a pre-
dicted sink, we compute its similarity to known sinks using two
kinds of code embeddings: 1) based on enclosing statement and 2)

based on enclosing function. We use GraphCodeBERT [9] to com-
pute these embeddings. GraphCodeBERT is a transformer-based
model pre-trained using large corpus of programs on a general task.
GraphCodeBERT can be fine-tuned to solve many downstream
tasks in programming languages. For our work, we use a publicly
available pre-trained GraphCodeBERT model used for clone detec-
tion.6 Algorithm 2 describes our approach.

Algorithm 2 Computing Max Similarity Score of a Sink
Input: Sink 𝑠 , Embeddings 𝐸𝐾
Output: Statement similarity 𝑍stmt , Function similarity 𝑍func

1: procedure computeSimilarityScore(𝑠, 𝐸𝐾)
2: stmt𝑠 , func𝑠 = getEnclosingCode(𝑠)
3: embeddings = 𝐸𝐾 (repr(𝑠))
4: 𝑍stmt = max {\ (Emb(stmt𝑠), 𝑒stmt) | (𝑒stmt, _) ∈ embeddings}
5: 𝑍func = max {\ (Emb(func𝑠), 𝑒func) | (_, 𝑒func) ∈ embeddings}
6: return 𝑍stmt, 𝑍func
7: end procedure

The algorithm takes a sink program element 𝑠 and an embed-
dings map of known sinks 𝐸𝐾 (indexed by representations) as in-
puts and returns the maximum statement-based similarity 𝑍stmt
and function-based similarity 𝑍func for 𝑠 to any known sink. The
algorithm extracts the statement and function enclosing sink 𝑠

(Line 2). Then, it obtains the embeddings for the representation
of 𝑠 (Line 3). Note that embeddings is a set of embeddings of sink
program elements which have same representation as sink 𝑠 . Each
element in this set is a tuple containing the statement and function
embeddings of a sink program element.

The algorithm then computes the similarity of the embedding
of sink 𝑠 to each embedding in the embeddings set and stores the
maximum similarity scores in 𝑍stmt and 𝑍func (Lines 4-5). Here,
Emb is a function which computes the embedding of a given code-
snippet (statement or function) using GraphCodeBERT, and \ is a
function which computes the cosine similarity of two input vectors,
i.e., the embeddings in this case. Finally, it returns the twomaximum
similarity scores (Line 6).
Combining the scores. Once, we compute the similarity scores,
we combine it with the confidence scores in Algorithm 1, Line 6.
This step improves the scores of predicted sinks which are similar
to one or more known sinks and penalizes the scores of predicted
sinks which are dissimilar.
Computing similarity for sink predictions. In addition to rank-
ing the sinks prediction the Similarity-Based Refiner also computes
embeddings 𝐸𝑃 for the sinks predictions S𝑃 . Algorithm 1 instanti-
ates 𝐸𝑃 as empty set (Line 3) and updates the sink embeddings in
each iteration (Line 8).

4.4 Feedback-Based Refiner
The Feedback-Based Refiner allows domain experts to further refine
the predictions by incorporating their feedback. The Feedback-
Based Refiner provides a User Interface (UI) which displays all the
predicted sinks sorted by confidence scores.

Figure 4 shows a screenshot of the UI. It provides two options
with each prediction: “ban”, which hides the corresponding sink;

6https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/
clonedetection

https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/clonedetection
https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/clonedetection

InspectJS: Leveraging Code Similarity and User-Feedback for Effective Taint Specification Inference for JavaScript ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 4: UI of feedback-based refiner. Sink candidates can be filtered by representation (left) and inspected ordered by
descending score (right), with buttons for removing individual candidates, or groups of similar candidates.

and “ban similar”, which hides the corresponding sink as well as
other sinks which are similar (up to some pre-selected threshold).
The UI also shows the list of representations sorted by the number
of sinks each corresponds to. Algorithm 3 describes how we obtain
the set of sinks that are similar to given sink 𝑠 . The algorithm
computes the similarity score of each sink 𝑠′ which has the same
representation as given sink 𝑠 (Lines 3-13) using the predicted
sink embeddings 𝐸𝑃 , computed by the Similarity-Based Refiner. It
then selects sinks that have a similarity score above user-defined
threshold 𝛼 and returns the selected sinks to the caller.

The goal of our UI is to allow an experienced developer to quickly
and efficiently triage the list of predicted sinks. The developer can
remove individual (or similar) sinks that they consider to be false
positives. They can also filter the predictions by de-selecting repre-
sentations. For instance, a representation which matches too many
sinks may indicate that they are too coarse and mostly generate
false positives. The developer can easily hide the corresponding
predictions for such representations.

Algorithm 3 Filter similar sinks using Code Similarity
Input:Sink 𝑠 , Predicted sinks S𝑅 , Sink embeddings 𝐸𝑃 , Similarity Threshold 𝛼
Output: similar sinks S

1: function GetSimilar(𝑠 , S𝑅 , 𝐸𝑃 , 𝛼)
2: S = ∅
3: for (𝑠′, 𝑝) ∈ S𝑅 do
4: if repr(𝑠) = repr(𝑠′) ∧ 𝑠 ≠ 𝑠′ then
5: estmt𝑠 , efunc𝑠 = 𝐸𝑃 (𝑠)
6: estmt𝑠′ , efunc𝑠′ = 𝐸𝑃 (𝑠′)
7: 𝑍stmt = \ (estmt𝑠 , estmt𝑠′)
8: 𝑍func = \ (efunc𝑠 , efunc𝑠′)
9: if (𝑍stmt + 𝑍func)/2 > 𝛼 then
10: S = S ∪ 𝑠′
11: end if
12: end if
13: end for
14: return S
15: end function

5 EVALUATION
To evaluate the practical usefulness of InspectJS we pose ourselves
the following research questions:
RQ1: Does InspectJS find new sinks that are as yet not covered by

hand-written models?

RQ2: How much effort does it take to triage InspectJS results?
RQ3: How important are the different components of InspectJS?
RQ4: Can the predicted sinks be used to highlight new security

alerts?

Choosing JavaScript security queries. For all research questions,
we focus on three representative CodeQL security queries address-
ing some of the top 25 software vulnerabilities identified by MITRE
CWE Top 25:7 TaintedPath,8 XSS,9 and NoSQLInjection.10 Taint-
edPath detects path-traversal vulnerabilities where a potentially
malicious user can control the path of a file being read or written;
XSS detects client-side cross-site scripting vulnerabilities where po-
tentiallymalicious JavaScript code can be injected into the DOMof a
webpage; and NoSQLInjection detects NoSQL-injection vulnerabili-
ties where a user can insert JavaScript code into a NoSQL query.

Table 1: Results from manually labelling predicted sinks

Query # Results # TPs Min TP Coarsest Max TP/FP
score TP repr similarity

TaintedPath 4,611 56 0.58 3% 0.91
XSS 10,504 436 0.75 7% 1.00
NoSQLInjection 1,473 187 0.58 16% 0.93

Finding representative JavaScript projects per query. To em-
pirically evaluate the effectiveness of InspectJS and answer our
research questions, we need a corpus of JavaScript code to train our
model on and produce new predictions. For this purpose, we choose
open-source projects from GitHub. While there is no shortage of
such projects, selecting projects at random would most likely have
left us with projects that do not use any APIs relevant to the three
queries we focus on. Instead, we choose projects where the existing
CodeQL query produces at least one alert (and hence the existing
library models identify at least one sink), the intuition being that
these projects perhaps also use other API, or as yet unmodeled
parts of APIs, relevant to the query.

To select candidate projects, we ran a query on all JavaScript
projects on LGTM.com [8], a cloud platform for running CodeQL
analyses at scale on large numbers of open-source repositories, in
7https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
8https://git.io/JrRxW
9https://git.io/JrRAy
10https://git.io/JrRNQ

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://git.io/JrRxW
https://git.io/JrRAy
https://git.io/JrRNQ

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Saikat Dutta, Diego Garbervetsky, Shuvendu K. Lahiri, and Max Schäfer

May 2021. Among the roughly 200,000 projects we queried, we
found 562 projects satisfying our criteria for TaintedPath, 2834 for
XSS, and 833 for NoSQLInjection.

We conducted two different experiments, one to address the
first three research questions, and the other to address the fourth
question. We will now describe the setup and outcomes of each
experiment in turn, and answer the research questions.

5.1 Experiment 1: Manually labelling sink
predictions

For our first experiment, we used InspectJS to automatically identify
sinks for the three CodeQL queries, and then inspected the results.
Experimental Setup. To keep the number of predictions manage-
able, we randomly selected 100 projects per query, and then split
each set into a training set of 90 projects and a held-back test set
of 10 projects. We trained the InspectJS model on the training set
and produced predictions for the test set, filtering out any previ-
ously known sinks for which CodeQL already has manually written
models. Finally, the fourth author (an experienced CodeQL analysis
engineer) manually labelled the predictions as true positives (that
is, sinks that are currently not modelled by the CodeQL standard
library but arguably should be), or false positives.
Predictions. Table 1 presents the results of this experiment. Each
row presents the results of one query. For each query, column #Re-
sults presents the total number of sink predictions and column #TPs
presents the number of true positives. This data allows us to answer
RQ1 in the affirmative: InspectJS does indeed find new sinks. We
have reported missing sinks in CodeQL identified by InspectJS to
the CodeQL library maintainers on several occasions, which has
already led to numerous improvements to the manual models.11

However, it is immediately obvious that the raw output of the
ML model is too noisy to be useful, with only a few percent of
predictions being true positives. This motivates the need for a tool
like InspectJS to allow an analysis engineer to efficiently triage the
set of predictions and prune out false positives.

As described previously, InspectJS provides three metrics for
categorizing predictions: the score of a prediction, the coarseness of
its representation (that is, the percentage of all predictions that have
this representation), and the similarity of different predictions. The
intuition is that a prediction with a low score or high coarseness is
likely to be a false positive, and that false positives are likely to be
similar to each other, but not to true positives.

Table 1 shows some statistics that allow us to test this claim. Col-
umn Min TP score presents the minimum score of a true positive,
which is above 0.5 for each query; this suggests that predictionswith
a score below 0.5 can be disregarded in practice. Column Coarsest
TP repr presents the maximum coarseness of a true positive, that
is, the percentage of predictions that have the same representation
as a true positive. This value varies quite a bit between queries,
from 3% for TaintedPath to 16% for NoSQLInjection. Disregarding
predictions whose representation accounts for more than 20% of

11We contributed three pull requests, which have all been merged: https://github.com/
github/codeql/pull/5860, https://github.com/github/codeql/pull/5262, https://github.
com/github/codeql/pull/4753. Additionally, the library maintainers themselves im-
plemented further improvements based on input from us: https://github.com/github/
codeql/pull/5862.

all predictions seems like a reasonably safe thing to do in practice,
but the evidence is not clear cut in this case.

Table 2: Metrics for triaging effort, with similarity threshold
0.95 and coarseness threshold 20%

Query # Discarded # Remaining # Steps FNs
(score + coarseness) FPs to triage

TaintedPath 3,007 (1,025 + 1,982) 1,548 523 0
XSS 2,136 (2,136 + 0) 7,932 2,874 10
NoSQLInjection 666 (666 + 0) 620 243 0

Finally, column Max TP/FP similarity shows the maximum
similarity between a true positive and a false positive. Recall that
our prototype allows a user to dismiss not just a single false positive
they have identified, but also all other predictions that are suffi-
ciently similar to it. Here, “sufficiently similar” should be chosen
in such a way that it is unlikely that any of the predictions dis-
missed alongside the false positive are true positives. Unfortunately
our experiment shows that this is not achievable with our current
similarity metric: for XSS, there are true positives that are indistin-
guishable from false positives in terms of code similarity, meaning
their similarity score is 1. For the other queries, a similarity score
of 0.95 looks to be a safe cut-off.
Triaging effort. To estimate the effort required to triage the set of
predictions, we count the number of predictions that are discarded
due to not meeting the cut-off for score or coarseness, and the
number of steps that would be required to triage the remaining
predictions, as well as the number of true-positive predictions that
would be wrongly discarded during this process. These are, of
course, best-case estimates since we are using cut-offs established
on the same dataset.

Table 2 presents the results of this computation. Column # Dis-
carded shows the number of predictions that are discarded (with
details on how many were discarded due to low score and high
coarseness, respectively, in brackets); column # Remaining FPs
shows the number of false-positive predictions that are not dis-
carded; column # Steps to Triage shows the number of steps
needed to triage the remaining predictions; and column # FNs the
number of true results that are missed in this process. We can see
that score and coarseness act as a very useful first filter, discard-
ing 65% of predictions for TaintedPath, 20% for XSS, and 45% for
NoSQLInjection. After that, the analysis developer still needs to
identify and dismiss the remaining false positives, but as the ta-
ble shows the similarity-based multi-dismissal feature significantly
reduces that effort, which each step on average dismissing about
three false positives in one go.

For XSS, multi-dismissal results in ten false negatives, since, as
we discussed above, there are true positives that are indistinguish-
able from false positives in terms of code similarity. For the other
queries, the number of false negatives is zero.

Figure 5 shows how the number of steps and the number of
false positives vary with the similarity threshold: for each of our
three queries, we compute both metrics for similarity thresholds
between 0.80 and 0.95. As expected, decreasing the similarity thresh-
old makes triaging faster: with a threshold of 0.80, the number of
steps is 55 for TaintedPath, 157 for XSS, and 43 for NoSQLInjection,
which is about 1/10th to 1/20th the number for a threshold of 0.95 as
shown in Table 2. Of course, this comes at the price of missing true

https://github.com/github/codeql/pull/5860
https://github.com/github/codeql/pull/5860
https://github.com/github/codeql/pull/5262
https://github.com/github/codeql/pull/4753
https://github.com/github/codeql/pull/4753
https://github.com/github/codeql/pull/5862
https://github.com/github/codeql/pull/5862

InspectJS: Leveraging Code Similarity and User-Feedback for Effective Taint Specification Inference for JavaScript ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 5: Impact of similarity threshold on triaging effort
(top) and false negatives (bottom); y-axis is log scale.

positives: at similarity threshold 0.80, TaintedPath misses eight true
positives, XSS 187, and NoSQLInjection 117, which is significantly
above the values for 0.95 shown in Table 2.

Our answer to RQ2 is, therefore, nuanced: an analysis engineer
using InspectJS needs to be aware that the vast majority of predic-
tions are likely to be false positives, but the various metrics provided
by InspectJS can be used to trade off triaging effort against them.
Importance of InspectJS components. The novelty of InspectJS
lies in combining the triple-mining approach of Seldon with a code-
similarity metric to weed out false positives. A natural question
is whether this combination works better than either component
alone, which we investigate now.

On one hand, we might conceivably do away with the triple
computation altogether, and simply consider all data-flow nodes
that could potentially be sinks, relying entirely on code similarity
to rank and triage them. However, this is not a viable approach:
the number of potential sinks across our ten test projects is 992,035
for TaintedPath, 1,308,150 for XSS, and 105,651 for NoSQLInjection.
Overall, this means that the triple-computation step reduces the
number of predictions by about two orders of magnitude.

On the other hand, we could discard the code-similarity step, but,
as already discussed, Table 2 shows that without similarity-based
multi-dismissal the triaging effort would be about three times as
big. In summary, then, our answer to RQ3 is that both components
of our approach make their own important contribution towards
easing the reviewing burden.

5.2 Experiment 2: Analyzing security alerts
To answer RQ4, we take our three queries and boost them, that is,
we use InspectJS to predict new sinks on a training set of projects,
and then include them among the set of sinks recognized by the
query to yield a boosted query. We then run that boosted query
on a test set of projects, and consider the new alerts it produces

on these projects (compared to the original query), and evaluate
whether they are correct.
Experimental Setup.Manually evaluating whether new alerts are
correct is labor-intensive, of course, so we use an alternative strat-
egy to evaluate InspectJS’s performance: for each given CodeQL
query 𝑄new, we obtain an older version 𝑄old of the same query
from the version history of CodeQL. This query will have the role
ofA𝑀 and we boost it with InspectJS to produceA𝑏𝑜𝑜𝑠𝑡𝑒𝑑

𝑀
. We call

this query𝑄boosted
old . Finally, we compare the alerts generated by the

boosted query on a set of test projects with the alerts generated by
𝑄new on the same set of projects, which we use as ground truth.

Table 3: Results from comparing old versions of queries
boosted with InspectJS to the latest version of the same query.
Averaged over three runs on 200 projects, with random 50-50
splits to obtain test and training sets in each round.

Query Alerts Alerts Spurious Projects with
to Recover Recovered Alerts Alerts to Recover

TaintedPath 58.33 46 1909 19
XSS 15 14 406 4.33
NoSQLInjection 303 266.67 719.67 38.67

To run this experiment, we selected 200 different projects for
each of the three queries we consider. Then, for each query we run
three rounds of the boosting process described above, randomly
splitting the projects into 100 projects for training and 100 for
testing in each round.
Results. In Table 3 we present the results averaged over the three
rounds for each query. Column Alerts to Recover shows the aver-
age number of new alerts produced by 𝑄new that are not flagged
by 𝑄old. Column Alerts Recovered shows how many of these
new alerts are found by the boosted query 𝑄boosted

old on average.
Conversely, Column Spurious Alerts shows how many of the new
alerts from the boosted query are not flagged by 𝑄new. We con-
sider them as false positives, even though it is possible that some
of them are actual true positives not captured by 𝑄new. Finally,
column Projects with Alerts to Recover shows how many of the
100 test projects had any alerts to recover on average.

In response to RQ4, we can say that InspectJS succeeds in pre-
dicting sinks that lead to security alerts, and its recall with respect
to new query versions is high. The false positive rate is also quite
high, however, which agrees with the results of Experiment 1. It
is worth noting that in this experiment we do not filter out pre-
dictions with very coarse representations, which may exacerbate
this problem, and of course (as noted above) our labeling of false
positives is pessimistic, so the actual number of false positives is
lower.

5.3 Threats to validity
The main threat to the validity of the results from Experiment 1 is
bias in the manual labelling. To counter this threat, we randomly
selected 20 predictions for each query and gave them to CodeQL
experts not involved in this project to label, and compared the
results with our own labelling. For TaintedPath we agreed on all
20 predictions, for XSS on 17 (with the external expert marking
three predictions as true positives that we had dismissed as false

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Saikat Dutta, Diego Garbervetsky, Shuvendu K. Lahiri, and Max Schäfer

positives), and for NoSQLInjection again on all 20. These results
suggest that our labeling is reliable overall, perhaps with a slight
bias towards dismissing predictions as false positives.

Since our experiments are limited in scope it is difficult to draw
quantitative conclusions. We have, however, provided evidence
that InspectJS finds additional sinks missing frommanually-written
models that have been maintained by domain experts over many
years, thereby showing the advantages of complementing manual
modeling with automated techniques. While it incurs a substantial
number of false positives, the techniques for organizing predictions
reduce the effort required to prune them, and the predicted sinks
are useful in finding actual security alerts.

Finally, we are, unfortunately, unable to offer a direct comparison
of our technique to Seldon, since it is not publicly available. While
the core of Seldon∗ is essentially a re-implementation of Seldon for
JavaScript, the original Seldon paper does not provide sufficient
technical details for us to be confident that our implementation
matches theirs in terms of results.

6 RELATEDWORK
Taint Specification Mining. There are several prior approaches
for inferring information flow specifications from programs. Mer-
lin [10] models information flow paths in C# programs using prob-
abilistic constraints and solves them using factor graphs. However,
Merlin only works on statically typed languages (C#). Further, in-
ference using factor graphs is much less scalable than approaches
using linear constraints (which both our work and Seldon [4] uses).
Seldon [4] was originally evaluated on Python programs. In this
work we adapt their approach for JavaScript programs and improve
on their technique by incorporating code similarity-based filter-
ing mechanism and refinement of predictions using user feedback.
SUSI [13] is a SVM-based approach for detecting sources and sinks
in Android APIs. However, their approach relies on static program
features and similarity of APIs with similar signatures which are
hard to obtain for dynamic languages like JavaScript. Staicu et
al. [15] use dynamic analysis for detecting taint specifications for
JavaScript. However, their method depends on extracting infor-
mation by executing existing test-suites. This approach may miss
sources/sinks which are not covered by the test-suite. In contrast,
InspectJS is more likely to over-approximate true sources/sinks.
Taint Analysis. There are several static [2, 17] and dynamic [5, 16]
taint analyses proposed in literature and employed for detecting
security issues or other vulnerabilities in code. InspectJS can aid
existing taint analysis techniques by filling in the gap of missing
taint specifications and improve their effectiveness.
Feedback driven analyses. Raghothanam et al. [12] leverage user-
feedback to improve an underlying probabilistic static analysis. In
contrast, our user-feedback leverages code-similarity as a postpro-
cessing step to help triage warnings.
Learning Based Approaches for Predicting Program Proper-
ties.GraphCodeBERT [9] is a transformer-based approach for learn-
ing semantic information from code. We adopt their approach for
improving the precision of InspectJS by identifying similar events
which are more likely to have similar roles (e.g., sinks). JSNice [14] is
another learning-based approach for predicting syntactic or seman-
tic program properties for JavaScript. Typilus [1] is Graph Neural

Network (GNN) based approach for predicting variables types for
Python. As such, these techniques may also be leveraged by future
approaches to improve the precision of InspectJS’s results.

7 CONCLUSION
In this paper, we described our experience combining machine-
learning based taint specification inference of sinks along with man-
ual modelling for important CodeQL security queries for JavaScript.
We also describe how we leverage code-similarity metrics and user-
feedback to help analysis engineers effectively triage the predictions
to prune spurious predictions.

In future work, we plan to extend InspectJS to infer source spec-
ifications, as well as taint-flow and aliasing specifications. We are
also working on incorporating approaches based on abductive infer-
ence of library specifications [18]. Finally, it could be interesting to
apply our feedback-based refiner to other approaches for inferring
taint specifications, since it is not technically tied to Seldon∗.

ACKNOWLEDGMENTS
We thank Ian Wright and Madan Musuvathi for many insightful
discussions which greatly improved InspectJS. This work is partially
funded by ANPCYT PICT 2018-3835, PICT 2019-1442, CONICET
PIP 0731CO and UBACYT 2018-0419BA projects and Microsoft
Azure research grants.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus:

Neural type hints. In PLDI.
[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. PLDI (2014).

[3] Zimin Chen and Martin Monperrus. 2019. A literature study of embeddings on
source code. arXiv preprint arXiv:1904.03061 (2019).

[4] Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin T. Vechev. 2019.
Scalable taint specification inference with big code. In PLDI. https://doi.org/10.
1145/3314221.3314648

[5] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In ISSTA.

[6] John Forrest and Robin Lougee-Heimer. 2005. CBC user guide. In Emerging
theory, methods, and applications. INFORMS.

[7] GitHub. 2021. CodeQL Library. https://codeql.github.com
[8] GitHub. 2021. LGTM. https://lgtm.com/
[9] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long

Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. GraphCodeBert:
Pre-training code representations with data flow. arXiv:2009.08366 (2020).

[10] Benjamin Livshits, Aditya V Nori, Sriram K Rajamani, and Anindya Banerjee.
2009. Merlin: Specification inference for explicit information flow problems. PLDI
(2009).

[11] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type Regres-
sion Testing to Detect Breaking Changes in Node.js Libraries. In ECOOP.

[12] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018.
User-guided program reasoning using Bayesian inference. In PLDI.

[13] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A machine-learning
approach for classifying and categorizing Android sources and sinks. In NDSS.

[14] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program
properties from big code. In POPL.

[15] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, and
Michael Pradel. 2020. Extracting taint specifications for JavaScript libraries. In
ICSE.

[16] Shiyi Wei and Barbara G Ryder. 2013. Practical blended taint analysis for
JavaScript. In ISSTA.

[17] Zhemin Yang and Min Yang. 2012. Leakminer: Detect information leakage on
Android with static taint analysis. In 2012 Third World Congress on Software
Engineering.

[18] Haiyan Zhu, Thomas Dillig, and Isil Dillig. 2013. Automated Inference of Library
Specifications for Source-Sink Property Verification. In APLAS.

https://doi.org/10.1145/3314221.3314648
https://doi.org/10.1145/3314221.3314648
https://codeql.github.com
https://lgtm.com/

	Abstract
	1 Introduction
	2 Motivating example
	3 Background: Seldon
	4 Our Approach
	4.1 Seldon*
	4.2 GetSinks
	4.3 Similarity-Based Refiner
	4.4 Feedback-Based Refiner

	5 Evaluation
	5.1 Experiment 1: Manually labelling sink predictions
	5.2 Experiment 2: Analyzing security alerts
	5.3 Threats to validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

